

I — Islands

Deep in the Carribean, there is an island even stranger than the Monkey Island, dwelled by Horatio Torquemada Marley. Not only it has a rectangular shape, but is also divided into an $n \times m$ grid. Each grid field has a certain height. Unfortunately, the sea level started to raise and in year *i*, the level is *i* meters. Another strange feature of the island is that it is made of sponge, and the water can freely flow through it. Thus, a grid field whose height is at most the current sea level is considered *flooded*. Adjacent unflooded fields (i.e., sharing common edge) create unflooded areas. Sailors are interested in the number of unflooded areas in a given year.

An example of a 4×5 island is given below. Numbers denote the heights of respective fields in meters. Unflooded fields are darker; there are two unflooded areas in the first year and three areas in the second year.

Year 1:						Year 2:					
	1	2	3	3	1		1	2	3	3	1
	1	3	2	2	1		1	3	2	2	1
	2	1	3	4	3		2	1	3	4	3
	1	2	2	2	2		1	2	2	2	2

Multiple Test Cases

The input contains several test cases. The first line of the input contains a positive integer $Z \leq 20$, denoting the number of test cases. Then Z test cases follow, each conforming to the format described in section *Single Instance Input*. For each test case, your program has to write an output conforming to the format described in section *Single Instance Output*.

Single Instance Input

The first line contains two numbers n and m separated by a single space, the dimensions of the island, where $1 \le n, m \le 1000$. Next n lines contain m integers from the range $[1, 10^9]$ separated by single spaces, denoting the heights of the respective fields. Next line contains an integer T ($1 \le T \le 10^5$). The last line contains T integers t_i , separated by single spaces, such that $0 \le t_1 \le t_2 \le \ldots \le t_{T-1} \le t_T \le 10^9$.

Single Instance Output

Your program should output a single line consisting of T numbers r_j separated by single spaces, where r_j is the number of unflooded areas in year t_j .

Example

Input	Output
1	2 3 1 0 0
4 5	
1 2 3 3 1	
1 3 2 2 1	
2 1 3 4 3	
1 2 2 2 2	
5	
1 2 3 4 5	