
H. Hypervisor MacrOS — solution

Problem

Given directed graph G = (V , E )

Operations:

answer query (v , w): ‘if v  w?’

add arc v → w

Assumptions

For each query (v , w) there is v  w or w  v
None addition creates the cycle

Brute force search

For each query (v , w) traverse graph from vertex v until w is reached

Solution — Incremental topological order

Maintain topological order due to addition of new arcs.
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Brute force search
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Addition of arc v → w

If v < w then do nothing.

a w b c d e v

f

Definitions:

Forward vertices F = {w} ∪ {u : w  u}
Backward vertices B = {v} ∪ {u : u  v}

General Idea

Do bidirectional search forward from w and backward from v until
finding either a cycle or a set of vertices whose reordering will restore
topological order.
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Definition

u is scanned if it is forward (resp. backward) and we trawersed all
its outgoing (resp. incoming) arcs.

Algorithm A

1. Traverse arcs forward from forward vertices and backward from
backward vertices until there is a vertex s such that all forward vertices
less than s and all backward vertices greater than s are scanned.

Example
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Algorithm A

1. Traverse arcs forward from forward vertices and backward from
backward vertices until there is a vertex s such that all forward vertices
less than s and all backward vertices greater than s are scanned.
2. Let X = {x ∈ F : x < s} and Y = {y ∈ B : s < y}. Find topological
orders of OX and OY of the subgraphs induced by X and Y , respectively.
3. Assume s is not forward (the case of s not backward is symmetric).
Delete the vertices in X ∪ Y from the current vertex order and reinsert
them just after s, in order OY followed by OX .

Example

a w b s d e v f
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Affected Region

Restrict the search only to the affected region, i.e., the set of vertices
between w and v .

a w b c d e v f

⇓

Complexity

O(n) — amortized time per arc addition
O(1) — for each query a < b
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Affected Region

Restrict the search only to the affected region, i.e., the set of vertices
between w and v .

a w b c d e v f

Compatible arcs

We call an arc u → x traversed forward and an arc y → z traversed
backward compatible if u < z .

Lemma

If the searches are compatible, the amortized number of arcs traversed
during searches is O(m1/2) per arc addition.

Rafa l Nowak 5/6



H. Hypervisor MacrOS — solution

Affected Region

Restrict the search only to the affected region, i.e., the set of vertices
between w and v .

a w b c d e v f

Compatible arcs

We call an arc u → x traversed forward and an arc y → z traversed
backward compatible if u < z .

Lemma

If the searches are compatible, the amortized number of arcs traversed
during searches is O(m1/2) per arc addition.

Rafa l Nowak 5/6



H. Hypervisor MacrOS — solution

Compatible search

Traverse arcs u → x forward in non-decreasing order on u and arcs
y → z backward in non-increasing order on z .

Some implementation details

We can implement an ordered search using two heaps (priority
queues) to store unscanned forward and unscanned backward
vertices ⇒ amortized time bound of O(m1/2 log n) per arc addition.

We maintain the vertex order using a data structure such that
testing the predicate x < y for two vertices x and y takes O(1)
time, as does deleting a vertex from the order and reinserting it just
before or just after another vertex.
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