The $43{ }^{\text {rd }}$ ACM International Collegiate Programming Contest Asia Nanjing Regional Contest

October 14

Problems

A Adrien and Austin
B Tournament
C Cherry and Chocolate
D Country Meow
E Eva and Euro coins
F Frank
G Pyramid
H Huge Discount
I Magic Potion
J Prime Game
K Kangaroo Puzzle
L Lagrange the Chef
M Mediocre String Problem

Do not open before the contest has started．

Problem A. Adrien and Austin

Input file: standard input
Output file: standard output
Adrien and Austin are playing a game with rocks.
Initially, there are N rocks, indexed from 1 to N. In one move, the player chooses at least 1 and at most K consecutively indexed rocks (all of them should not have been removed) and removes them from the game.
Adrien always starts the game, and then Adrien and Austin take turns making moves. The player who is unable to make a move (because all rocks are removed) loses.
Given N, K, find who is going to win the game (assuming they are smart and are playing optimally).

Input

The first line contains two integers $N, K\left(0 \leq N \leq 10^{6}, 1 \leq K \leq 10^{6}\right)$.

Output

Print a name ("Adrien" or "Austin", without the quotes) - the person who is going to win the game.

Examples

| standard input | standard output |
| :--- | :--- | :--- |
| 11 | Adrien |
| 93 | Adrien |

Problem B. Tournament

$\begin{array}{ll}\text { Input file: } & \text { standard input } \\ \text { Output file: } & \text { standard output }\end{array}$
There are N villagers (including the village chief) living in Number Village. Interestingly, all of their houses lie on a straight line. The house of the i-th villager $(0 \leq i<N)$ lies exactly a_{i} kilometers to the east of the village chief's house. (For simplicity, the 0 -th villager is the village chief, so $a_{0}=0$.)
Recently, a tournament is going to be held in Number Village, in which everyone in the village will participate.
For the convenience of villagers, the organizer plans to build K stadiums. The stadium can be built anywhere in the village, even at the same place as any villager's house.
However, the organizer wants the traffic cost to be minimized. The traffic cost is defined by $\sum_{i=0}^{N-1} \min _{j=0}^{K-1} D\left(a_{i}, s_{j}\right)$, where $D\left(a_{i}, s_{j}\right)$ is the distance between the i-th villager's house and the j-th stadium.
Your task is to calculate the minimal traffic cost (rounded down to the nearest integer), given N, K and a_{i}.

Input

The first line contains two positive integers $N, K\left(K \leq N \leq 3 \times 10^{5}\right)$.
The second line contains N non-negative integers $a_{0}, a_{1}, \cdots, a_{N-1}\left(0=a_{0}<a_{1}<\cdots<a_{N-1} \leq 10^{9}\right)$.

Output

Print a single integer - the minimal traffic cost rounded down to the nearest integer.

Examples

standard input	standard output
52	7
047910	
93	23

Problem C. Cherry and Chocolate

Input file: standard input
Output file: standard output
Cherry and Chocolate play a game on a tree. First, Cherry picks a node and paints it pink. Then, Chocolate picks another node and paints it brown. Afterwards, Cherry picks yet another node and paints it pink. The game ends here. Chocolate doesn't get the second move.

For each node v, if there is no path from v to the brown node without passing through a pink node, Cherry gets a point.
Cherry wants to maximize her score, and Chocolate wants to minimize it. If both players play optimally, what will Cherry's score be?

Input

The first line contains an integer, $n\left(3 \leq n \leq 10^{5}\right)$, the number of nodes on the tree.
Each of the next $n-1$ lines contains two integers a_{i} and $b_{i},\left(1 \leq a_{i}, b_{i} \leq n\right)$, meaning there is an edge between node a_{i} and node b_{i}.

Output

A single integer, Cherry's score if both players play optimally.

Example

	standard input	standard output
4		3
1	2	
2	3	4

Problem D. Country Meow

Input file: standard input
Output file: standard output

In the $24^{\text {th }}$ century, there is a country somewhere in the universe, namely Country Meow. Due to advanced technology, people can easily travel in the 3 -dimensional space.
There are N cities in Country Meow. The i-th city is located at $\left(x_{i}, y_{i}, z_{i}\right)$ in Cartesian coordinate.
Due to the increasing threat from Country Woof, the president decided to build a new combatant command, so that troops in different cities can easily communicate. Hence, the Euclidean distance between the combatant command and any city should be minimized.
Your task is to calculate the minimum Euclidean distance between the combatant command and the farthest city.

Input

The first line contains an integer $N(1 \leq N \leq 100)$.
The following N lines describe the i-th city located.Each line contains three integers x_{i}, y_{i}, z_{i} ($-100000 \leq x_{i}, y_{i}, z_{i} \leq 100000$).

Output

Print a real number - the minimum Euclidean distance between the combatant command and the farthest city. Your answer is considered correct if its absolute or relative error does not exceed 10^{-3}. Formally, let your answer be a, and the jury's answer be b. Your answer is considered correct if $\frac{|a-b|}{\max (1, b \mid)} \leq 10^{-3}$.

Examples

	standard input	standard output	
3			2.500000590252103
0	0	0	
3	0	0	
0	4	0	
4		0.816496631812619	
0	0	0	
1	0	0	
0	1	0	
0	0	1	

Problem E. Eva and Euro coins

Input file: standard input

Output file: standard output
Eva is fond of collecting coins. Whenever she visits a different country, she always picks up as many local coins as she can. As you know, Eva also likes to go trips to Europe; thus she has collected a large amount of Euro coins because so many countries in Europe use them.
Eva has n Euro coins in total. She places all her coins on a desk in a row and plays a game with the coins. In one step Eva can choose exactly k consecutive coins and flips them at the same time, provided that all heads of these coins face up or all heads of these coins face down. She wonders that, in finite steps, what states of the coins can be reached from the original state.

Input

The first line contains two integers, n and $k\left(1 \leq k \leq n \leq 10^{6}\right)$ - the number of Euro coins Eva owns and the number of consecutive coins Eva can flip in one step. The next two lines contain two strings, s and t, respectively $(|s|=|t|=n) . s$ and t only contain the digits 0 and 1 .
s represents the initial state of the n coins: if the head of the i-th coin faces up, then the i-th character of s is 1 ; otherwise (i.e. the head of i-th coin faces down), the i-th character of s is $0 . t$ represents the desired final state of the n coins in the same way as s.

Output

If it is possible for Eva to reach the state represented by t from the state represented by s in finite steps, output "Yes"; otherwise, output "No" (without the quotes).

Examples

	standard input
62	Yes
000000	standard output
101101	No
83	
10101010	
01010101	

Problem F. Frank

Input file: standard input
Output file: standard output

Frank likes to travel. However, he doesn't prefer a fully-planned trip. Instead, he enjoys traveling from one city to another randomly.
Frank's favorite country is Country Meow because the roads in the country are complicated.
Country Meow has N cities, indexed with numbers from 0 to $N-1$, and there are M unidirectional roads. The i-th road can be denoted by $\left(a_{i}, b_{i}\right)$, which means it starts from city a_{i} and ends in city b_{i}, and does not pass through any other cities. Interestingly, there may be roads with $a_{i}=b_{i}$, or several roads with the same starting and ending cities. The roads are built in a way such that for any two cities A and B, one can travel from A to B through these roads.
Frank is planning Q trips to Country Meow. Each plan is an ordered list of cities $C=\left(c_{0}, c_{1}, \cdots, c_{K-1}\right)$ such that $c_{i} \neq c_{i+1}$ for all $0 \leq i \leq K-2$.

On a trip with a plan C, Frank will:

1. Go to city c_{0}.
2. Choose a road uniformly at random from all roads whose starting city is Frank's current city.
3. Follow the chosen road to the next city.
4. If C is a subsequence of the current visited cities sequence, then the trip is finished. Otherwise, go to step 2.
(A sequence A is a subsequence of another sequence B if one can delete some or no elements from B without changing the order and obtain A.)
However, each road requires a toll of 1 dollar. Frank wants to know the expected value of the total amount of fees he spent on each trip. Can you help him?

Input

The first line contains three positive integers $N, M, Q\left(3 \leq N \leq 400, M \leq 4 \times 10^{5}, Q \leq 400\right)$.
The following M lines describe the roads in the Country Meow. Each of them contains two integers a_{i}, b_{i} $\left(0 \leq a_{i}, b_{i}<N\right)$ - the starting and ending cities of the i-th road.
The following $2 Q$ lines describe the plans Frank made. Each two lines describe a plan. The first contains an integer $K(1 \leq K \leq 500)$ - the length of the city list; the second contains K integers $c_{0}, c_{1}, \cdots, c_{K-1}$ $\left(0 \leq c_{i}<N, c_{i} \neq c_{i+1}\right)$ - the city list in the plan.

Output

For each plan, print a single real number in one line - the expected value of the total amount of fees on the corresponding trip.

Your answer is considered correct if the absolute or relative error between each number in your output and the corresponding one in jury's answer does not exceed 10^{-8}. Formally, let your answer be a, and the jury's answer be b. Your answer is considered correct if $\frac{|a-b|}{\max (1,|b|)} \leq 10^{-8}$.

The 2018 ACM-ICPC Asia Nanjing Regional Programming Contest
Nanjing University of Aeronautics and Astronautics, Sunday October 14, 2018

Example

	standard input	standard output	
3	4	3	4.0000000000
0	1		6.0000000000
1	2		2.5000000000
2	0		
2	1		
2			
1	0		
4			
0	2	0	1
3			
2	1	2	

Problem G. Pyramid

Input file:
standard input
Output file:

The use of the triangle in the New Age practices seems to be very important as it represents the unholy trinity (Satan, the Antichrist and the False Prophet bringing mankind to the New World Order with false/distorted beliefs). The triangle is of primary importance in all Illuminati realms, whether in the ritual ceremonies of the Rosicrucians and Masons or the witchcraft, astrological and black magic practices of other Illuminati followers.
One day you found a class of mysterious patterns. The patterns can be classified into different degrees. A pattern of degree n consists of $\frac{n(n+1)}{2}$ small regular triangles with side length 1 , all in the same direction, forming a big triangle. The figure below shows the pattern of degree 3 . All small regular triangles are highlighted.

Since the pattern contains many regular triangles, which is very evil and unacceptable, you want to calculate the number of regular triangles formed by vertices in the pattern, so that you can estimate the strength of Illuminati. It is not necessary that each side of regular triangles is parallel to one side of the triangles. The figure below shows two regular triangles formed by vertices in a pattern of degree 3 .

Since the answer can be very large, you only need to calculate the number modulo $10^{9}+7$.

Input

The first line contains an integer $t\left(1 \leq t \leq 10^{6}\right)$ - the number of test cases.
Each of the next t lines contains an integer $n\left(1 \leq n \leq 10^{9}\right)$ - the degree of the pattern.

Output

For each test case, print an integer in one line - the number of regular triangles modulo $10^{9}+7$.

The 2018 ACM-ICPC Asia Nanjing Regional Programming Contest
Nanjing University of Aeronautics and Astronautics, Sunday October 14, 2018

Example

	standard input	standard output
3	1	
1		5
3	15	

Problem H. Huge Discount

Input file:

standard input
Output file:
John heard an urban legend from Dreamoon about convenience stores in Incredible Convenient Purchasing Country (ICPC). The original price of any good there is usually as high as $10^{10^{5}}$. Of course, nobody is going to pay such a high price. Instead, one can remove any two consecutive distinct digits from the original price. One can perform such operation as many times as he wants. Needless to say, each removal must be valid.

For example, if the original price is 123 , one could pay 1 dollar by removing 23 or pay 3 dollars by removing 12. However, it's illegal to pay 2 dollars because 1 and 3 are not adjacent. However, if the original price is 111 , no removal can be performed as all digits are the same.

There may be leading zeroes on the price tag. Also, leading zeroes may occur after some of such removals. In these cases, the leading zeroes are not removed automatically. Therefore, if the price tag reads 0033, one can get it for free by removing 03 twice.
John found some of such convenience stores. In these particular stores, there are some interesting properties on the prices:

1. Only digits 0,1 and 2 are used.
2. For every i, if the first digit on the price tag of good i is removed, it becomes the price tag if good $i+1$.

For example, if the price tag of good 1 is 012 , the price tag of good 2 is 12 and the price tag of good 3 is 2.

Please tell John how much it costs to buy all goods in one particular store.

Input

The first line contains an integer, $n\left(1 \leq n \leq 10^{5}\right)$, the number of goods in the store.
The second line contains a string, $s\left(|s|=n, s_{i} \in\{0,1,2\}, \forall i \in[1, n]\right)$, the price tag of good 1 in the store.

Output

An integer, the cost to buy all goods, without leading zeroes.

Examples

	standard input
5	3
11012	standard output
3	123

Problem I. Magic Potion

Input file: standard input
Output file: standard output
There are n heroes and m monsters living in an island. The monsters became very vicious these days, so the heroes decided to diminish the monsters in the island. However, the i-th hero can only kill one monster belonging to the set M_{i}. Joe, the strategist, has k bottles of magic potion, each of which can buff one hero's power and let him be able to kill one more monster. Since the potion is very powerful, a hero can only take at most one bottle of potion.
Please help Joe find out the maximum number of monsters that can be killed by the heroes if he uses the optimal strategy.

Input

The first line contains three integers $n, m, k(1 \leq n, m, k \leq 500)$ - the number of heroes, the number of monsters and the number of bottles of potion.
Each of the next n lines contains one integer t_{i}, the size of M_{i}, and the following t_{i} integers $M_{i, j}\left(1 \leq j \leq t_{i}\right)$, the indices (1-based) of monsters that can be killed by the i-th hero $\left(1 \leq t_{i} \leq m, 1 \leq M_{i, j} \leq m\right)$.

Output

Print the maximum number of monsters that can be killed by the heroes.

Examples

standard input	standard output
$\begin{array}{llll} \hline 3 & 5 & 2 & \\ 4 & 1 & 2 & 3 \\ 2 & 2 & 5 & \\ 2 & 1 & 2 & \end{array}$	4
$\begin{array}{\|llllll} \hline 5 & 10 & 2 & & & \\ 2 & 3 & 10 & & \\ 5 & 1 & 3 & 4 & 6 & 10 \\ 5 & 3 & 4 & 6 & 8 & 9 \\ 3 & 1 & 9 & 10 & & \\ 5 & 1 & 3 & 6 & 7 & 10 \end{array}$	7

Problem J. Prime Game

Input file: standard input
Output file: standard output
Given a suqence of n integers a_{i}.
Let $\operatorname{mul}(l, r)=\prod_{i=l}^{r} a_{i}$ and fac (l, r) be the number of distinct prime factors of mul (l, r).
Please calculate $\sum_{i=1}^{n} \sum_{j=i}^{n} \mathrm{fac}(i, j)$

Input

The first line contains one integer $n\left(1 \leq n \leq 10^{6}\right)$ - the length of the sequence.
The second line contains n integers $a_{i}\left(1 \leq i \leq n, 1 \leq a_{i} \leq 10^{6}\right)$ - the sequence.

Output

Print the answer to the equation.

Examples

Problem K. Kangaroo Puzzle

Input file: standard input
Output file: standard output

Your friend has made a computer video game called "Kangaroo Puzzle" and wants you to give it a try for him. As the name of this game indicates, there are some (at least 2) kangaroos stranded in a puzzle and the player's goal is to control them to gather. As long as all the kangaroos in the puzzle get together, they can escape the puzzle by the miraculous power of kangaroos.
The puzzle is a $n \times m$ grid consisting of $n m$ cells. There are walls in some cells and the kangaroos cannot enter these cells. The other cells are empty. The kangaroos can move in the following direction: up, down, left and right. It is guaranteed that one kangaroo can move from an empty cell to any other. It is also guaranteed that there is no cycle in the puzzle - that is, it's impossible that one kangaroo can move from an empty cell, pass by several distinct empty cells, and then back to the original cell.
There is exactly one kangaroo in every empty cell at the beginning. You can control the kangaroos by pressing the button U, D, L, R on your keyboard. The kangaroos will move simultaneously according to the button you press. For instance, if you press the button U, a kangaroo would move to the upper cell if it exists and is empty; otherwise, the kangaroo will stay still. You can press the buttons for at most 50000 times. If there are still two kangaroos standing in different cells after 50000 steps, you will lose the game.

Input

The first line contains two integers, n and $m(1 \leq n, m \leq 20)$, the height and the width of the puzzle, respectively. Each of the next n lines contains a $(0,1)$-string of length m, representing the puzzle. If the j-th character of the $i+1$-th line is 1 , then the cell at the i-th row and the j-th column is empty; otherwise (i.e. it is 0), the corresponding cell is blocked and cannot be entered.

Output

Print a string consisting of U, D, L, R, such that all kangaroos will get together after pressing the buttons in the order of this string. The length of the string should not exceed 50000 . There are many possible valid answers, so just print any of them.

Examples

standard input	standard output
44	LLUUURRRDD
1111	
1001	
1001	
2110	ULLLLLLLLLLLLLL
111111111111111	
101010101010101	

Problem L. Lagrange the Chef

Input file: standard input
Output file: standard output

Lagrange is a chef. He has developed several theories related to food.
In those theories, the most famous one is called Compatible Theory. Specifically, Lagrange has invented 10^{6} different dishes. However, one pair of dishes, namely X and Y, when tasted one after another (regardless of order), would have a negative impact on the dining experience. Lagrange called the pairs of dishes "incompatible".
The concept of "compatible" can also be extended to a full meal. A meal, consisting of several dishes served in a specific order, is compatible if no two dishes served consecutively are incompatible.
One day, a guest requests a meal consists of N dishes $a_{0}, a_{1}, \cdots, a_{N-1}$ to be served in order. Since the guest didn't know Compatible Theory, the requested meal can be incompatible.
Lagrange wants to adjust the order of dishes to make the meal compatible while keeping the adjusted list not differ a lot from the original one. Hence, he defines an "adjusting step" as moving a dish in the list to any other position.
Your job is to calculate the minimum number of adjusting step required to make the meal compatible, or determine that this is impossible.

Input

The first line contains three positive integers $N, X, Y\left(1 \leq N \leq 5000,1 \leq X, Y \leq 10^{6}, X \neq Y\right)$.
The second line cantains N positive integers, $a_{0}, a_{1}, \cdots, a_{N-1}\left(1 \leq a_{i} \leq 10^{6}\right)$.

Output

If it is not possible to make the meal compatible, print -1 . You should not print the quotation marks.
Otherwise, print an integer - the minimum number of adjusting step required to make the meal compatible.

Examples

	standard input		standard output
3	1	2	1
1	2	3	-1
3	1	2	-1
1	2	2	

Problem M. Mediocre String Problem

Input file:
Output file:
standard input
standard output

Given two strings s and t, count the number of tuples (i, j, k) such that

1. $1 \leq i \leq j \leq|s|$
2. $1 \leq k \leq|t|$.
3. $j-i+1>k$.
4. The i-th character of s to the j-th character of s, concatenated with the first character of t to the k-th character of t, is a palindrome.

A palindrome is a string which reads the same backward as forward, such as "abcba" or "xyzzyx".

Input

The first line is the string $s\left(2 \leq|s| \leq 10^{6}\right)$. The second line is the string $t(1 \leq|t|<|s|)$. Both s and t contain only lower case Latin letters.

Output

The number of such tuples.

Examples

standard input	standard output
ababa aba	5
aabbaa aabb	7

