
Moscow International Workshop ACM ICPC 2016
Day 8, AMPPZ-2016, Thursday, November 17, 2016

Problem A. Weak Pseudorandom Generator
Input file: standard input

Output file: standard output

Time limit: 1 second
Memory limit: 128 mebibytes

Byteland’s Homeland Security Agency is struggling fighting terrorists. There’s a new terrorist organiza-
tion, and they are encrypting all their communications. Secret agent Johnny infiltrated that organization,
but he managed to send only a single message before Operations HQ lost all communications with him.
Here’s the intel: Each organization member has their own encryption key which is generated using a lin-
ear pseudorandom number generator. For given parameters p, x0, a, b it generates the sequence f0 = x0,
fi+1 = (a · fi + b) mod p. The organization leader uses key number fi, and ith of the members uses key
fi. Once you become a member there’s no way to leave the organization. In his message Johnny also sent
the parameters of the generator and his own key x. Homeland Security Agency is now trying to decipher
captured communications. You’re given a bit different task: try to find out how many members the
organization could possibly have, that is, find any k such that fk = x. The organization is screening their
candidates very carefully (this is even more true now as they probably learned Johnny’s real identity) so
surely they haven’t inducted anyone after agent Johnny.

Input

The first and only line of input contains five integers separated by single spaces: p, x0, a, b, x (2 ≤ p < 109,
p is prime, 0 ≤ x0, a, b, x < p). The first four numbers are parameters of the generator, and the last one
is agent Johnny’s key.

Output

In the first and only line of output you should print number k such that fk = x and 0 ≤ k ≤ 1018, or the
word NIE if such k doesn’t exist. If there’s more than one such k, you can print any of them.

Examples

standard input standard output

5 3 2 1 0 2

7 1 2 0 5 NIE

Note

In Sample 1, the generated sequence is 3, 2, 0, 1, 3, 2, 0, 1, 3, 2, 0, 1, . . . In particular f2 = 0.

In Sample 2, the generated sequence is 1, 2, 4, 1, 2, 4, 1, 2, 4, . . . There’s no key with value 5, perhaps the
organization already knew that Johnny is a double agent?

Page 1 of 21



Moscow International Workshop ACM ICPC 2016
Day 8, AMPPZ-2016, Thursday, November 17, 2016

Problem B. Home Alone: Johnny Lost in New York

Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 128 mebibytes

Johnny has just arrived in New York for a conference. He slept in the plane and now has a whole day
free. He wants to go sightseeing, but in the evening he has to be on time for the conference. Johnny is
well prepared – he knows that the streets of New York form a regular grid, and points of interest are
at every crossing! Johnny wonders if it is possible to make a trip from the hotel at crossing s to the
conference place at crossing t while visiting every crossing exactly once – he doesn’t want to waste any
time. Of course he visits crossing s just after leaving the hotel, even before the trip starts.

The streets of New York form a regular grid: on the map there are n vertical streets and m horizontal
streets. The street names are just numbers: vertical streets are numbered from the left side, while
horizontal streets are numbered from the up side, both types are numbered with consecutive integers
starting with 1. Each horizontal street crosses with every vertical street, and the crossing of xth vertical
and yth horizontal street is denoted as (x, y).

Input

The input consists of three lines, each of which contains two integers separated by single spaces. In
the first line there are n and m (4 ≤ n,m ≤ 1000), denoting respectively the number of vertical and
horizontal streets on the map. In the second line there are sx and sy (1 ≤ sx ≤ n and 1 ≤ sy ≤ m). In
the third line there are tx and ty (1 ≤ tx ≤ n and 1 ≤ ty ≤ m). The hotel is at the crossing (sx, sy), while
the conference place is at the crossing (tx, ty). Crossings s and t are different.

Output

The output should consist of a single line and contain the description of a trip that Johnny could take,
or the word NIE if it’s not possible to make a trip satisfying above conditions. The description should
consist of a string of n ·m− 1 letters D, G, L, or P, which mean that the next step of Johnny’s trip should
be to go to the nearest crossing in the direction down, up, left, or right respectively (here up, down, left,
and right are the directions on the map that Johnny has).

Example

standard input standard output

4 4

1 1

1 4

PPPDLLLDPPPDLLL

4 4

3 2

2 3

NIE

Note

For Sample 1, the diagram shows an example trip that Johnny could take. The hotel is marked with a
dot, while the conference place is marked with a cross.

Page 2 of 21



Moscow International Workshop ACM ICPC 2016
Day 8, AMPPZ-2016, Thursday, November 17, 2016

1

2

3

4

1 2 3 4

Sample 2. The hotel is marked with a dot, while the conference place is marked with a cross. It’s not
possible to make a trip that would go through every crossing exactly once.

1

2

3

4

1 2 3 4

Page 3 of 21



Moscow International Workshop ACM ICPC 2016
Day 8, AMPPZ-2016, Thursday, November 17, 2016

Problem C. Generating Polygons

Input file: standard input

Output file: standard output

Time limit: 1 seconds
Memory limit: 128 mebibytes

Johnny has learned many new things about triangles and quadrangles in geometry class, including how
to compute their perimeter and area. He isn’t so good at computing these things but he really started to
like drawing different polygons. Due to both aesthetic and practical reasons he does so in the following
way:

• he draws an edge along one of the grid lines (horizontal or vertical) in such a way that the endpoints
lie on lines perpendicular to it; this means that edges have integer lengths and are parallel to grid
lines (and to axes),

• he never lifts his pencil off, so that his polygon has no “holes”, and terminates at the starting point,

• each point lies on at most two edges; moreover, when a point lies on exactly two edges it is an
endpoint of both of them (so it is a vertex of the polygon).

Johnny quickly noticed that computing perimeter and area of this type of polygons is very easy, so now
he is wondering how to draw such polygons that would have a given perimeter p and area a.

Can you help him by providing an instruction how to draw it?

Input

The first and only line of input contains two integers p and a, separated by single space (4 ≤ p ≤ 106,
1 ≤ a ≤ 1012). They denote respectively the perimeter and area of a polygon Johnny wants to draw.

Output

The output should consist of exactly one line. If a polygon with aforementioned properties of perimeter p
and area a exists the line should contain a description of such polygon. The description should consist
of p letters L, B, and P. They denote respectively: rotate 90 degrees left (counterclockwise), no rotation,
and rotate 90 degrees right (clockwise). After performing the rotation (if any) specified by the character,
a segment of length 1 will be drawn in the current direction. The starting direction is facing up.

In the opposite case, when such polygon does not exist, the only output line should contain the word
“NIE”.

Examples

standard input standard output

14 6 PLPPBPBBBPBPPL

20 26 NIE

Note

In Sample 1, the instruction describes the following figure which has perimeter 14 and area 6. The
starting point is marked with a dot.

Page 4 of 21



Moscow International Workshop ACM ICPC 2016
Day 8, AMPPZ-2016, Thursday, November 17, 2016

In Sample 2, it is easy to see that the polygon with perimeter 20 and maximum area is a 5× 5 square.

Page 5 of 21



Moscow International Workshop ACM ICPC 2016
Day 8, AMPPZ-2016, Thursday, November 17, 2016

Problem D. Minimal Support of Transportation

Input file: standard input

Output file: standard output

Time limit: 1 seconds
Memory limit: 128 mebibytes

This year the winter came early. Fortunately, it’s not too harsh, but the temperatures oscillating around
zero have a detrimental effect on the roads. What’s worse, it turned out that the road maintenance board
is out of money, and there’s still a long time until new year (and new budget allowance). Foreseeing
numerous roads to be damaged, the director of the board ordered to only repair the subset of roads of
minimum total length that still allows traveling between any pair of towns. Proud of his idea he decided to
call this subset a minimal support of transportation, in short MST. When Johnny, his brightest employee,
mentioned that there can be more than one MST, the director promptly concluded that it’s actually quite
fortunate: as long as there exists MST consisting only of undamaged roads the repairs are not necessary
at all! And for the second question, which Johnny intended to be rhethorical “How many broken roads
will it take until we actually start repairing them?” he just replied: “Great question! I’m waiting for an
answer!”. Unfortunately this question is too hard for Johnny, so he decided to outsource it to external
expert (i.e. you). During the talk with you he proudly pointed out that all the roads are bidirectional.

Input

The first line of input contains two integers n and m (1 ≤ n ≤ 300, 1 ≤ m ≤ 600), separated by single
space and representing the number of towns and the number of bidirectional roads between those towns
respectively. The next m lines describe the roads. Each of those lines contains three integers ai, bi, and
ci (1 ≤ ai, bi ≤ n, ai 6= bi, 1 ≤ ci ≤ 106), separated by single spaces, which means that the towns ai and
bi are directly connected by a road of length ci.

Two towns can be directly connected by more than one road, but there are no roads that would have
both endpoints at the same town (such roads, if they existed, would never be repaired anyway). You can
assume that given roads allow traveling between any pair of towns.

Output

The first and only line of output should contain a single integer: the minimum possible number of roads
that, if broken, would force the road maintenance board to order repairing one of them.

Example

standard input standard output

4 5

2 3 5

3 4 5

2 4 6

1 4 2

1 2 2

1

Note

The road network from example test contains exactly two MSTs, marked with thick lines on the diagram.
Both roads of length 2 belong to both MSTs, so breaking any of them forces a repair.

Page 6 of 21



Moscow International Workshop ACM ICPC 2016
Day 8, AMPPZ-2016, Thursday, November 17, 2016

1 2

34

2

2

5

56

1 2

34

2

2

5

56

Page 7 of 21



Moscow International Workshop ACM ICPC 2016
Day 8, AMPPZ-2016, Thursday, November 17, 2016

Problem E. Taxi
Input file: standard input

Output file: standard output

Time limit: 3 seconds
Memory limit: 128 mebibytes

Taxi rides in Byteland are quite expensive, but at least the taxi cabs are spacious. Thus, group rides are
very popular. The are n carrier companies, each characterized by three numbers:

• the maximum number ci of passengers in a taxi cab,

• the price si for the first kilometer of a trip,

• the price pi for each next kilometer of a trip.

Each company can supply any number of taxi cabs, but all cabs from one company are identical.

Johnny noticed a niche in the market and decided to become a middleman in ordering of taxis. He’ll
have to handle requests of the form: “order a taxi for m people on a distance of d kilometers” and has to
find the cheapest possible combination of taxi cabs to fulfill it assuming that passengers are not willing
to change taxis during the trip. His idea hit the jackpot, his services quickly became very popular, and
he now has too many requests to handle them manually. You were hired to help with automating that
process.

Input

The first line of input contains two integers n (1 ≤ n ≤ 105) and q (1 ≤ q ≤ 105), separated by a
single space, and denoting respectively the number of carrier companies and the number of requests to
be processed.

Each of the next n lines contains three integers separated by single spaces. In the ith of those lines, the
integers are ci, si, and pi, (1 ≤ ci ≤ 15, 0 ≤ si, pi ≤ 106), denoting respectively the capacity of a single
cab, the price for the first kilometer, and the price for each next kilometer.

Each of the next q lines contains two integers separated by a single space. In the ith of those lines, there
are mi and di, (1 ≤ mi ≤ 106, 1 ≤ di ≤ 106), denoting respectively the number of people and the distance
in ith request.

Output

The output should contain exactly q lines, one for each request.

Each line of output should contain one integer, the minimum possible cost of fulfilling the request, in the
same order as in the input.

Example

standard input standard output

3 3

4 8 4

4 15 2

3 6 3

1 12

11 3

7 20

37

44

106

Note

For the first request (1 passenger, 12 km) the cheapest way is to order one cab from the second carrier
for a price of 15 + 11 · 2 = 37.

Page 8 of 21



Moscow International Workshop ACM ICPC 2016
Day 8, AMPPZ-2016, Thursday, November 17, 2016

For the second request (11 passengers, 3 km) the cheapest way is to order two cabs from the first carrier
for 8 passengers, and one cab from the third carrier for the remaining 3 passengers for a total price of
2 · (8 + 2 · 4) + (6 + 2 · 3) = 44.

For the third request (7 passengers, 20 km) the cheapest way is to order two cabs from the second carrier
for a price of 2 · (15 + 2 · 19) = 106.

Page 9 of 21



Moscow International Workshop ACM ICPC 2016
Day 8, AMPPZ-2016, Thursday, November 17, 2016

Problem F. Antisocial Network
Input file: standard input

Output file: standard output

Time limit: 4 seconds
Memory limit: 128 mebibytes

Johnny is the creator of the first ever social network, but hardly anyone knows about it. This is because
while he was busy trying to find that one bug in his code, his colleague working on the project shabbily
took over the company and fired Johnny. Johnny decided to take revenge by using the bug which he
didn’t manage to fix: he can flip some subsets X of users.

Flipping X changes the friendship relation for all pairs of users in X, that is if a and b (a, b ∈ X) were
friends, then after flipping they no longer are, and vice versa. Johnny thinks that users who lose all their
friends, once all flips are done, will delete their accounts, and that if many do so, the stolen project will
surely die. Johnny spent the whole night looking for a good sequence of flips, and eventually came up with
a sequence of subsets of users V1,V2,. . .,Vk. Before he finally went to sleep he was sure that the sequence
he found will make all users delete their accounts, but this morning he is no longer so sure. He may have
made a mistake, given his sleep deprivation, anger at the colleague, and questionable programming skills.
That’s why you should verify for each user if after the flips suggested by Johnny the user would have no
friends.

Input

The first input line contains three integers n, m, and k (1 ≤ n ≤ 2.5 · 105, 1 ≤ k ≤ 104,

0 ≤ m ≤ min
{

n(n−1)
2 , 2 · 106

}
), separated by single spaces. These denote, respectively: the number

of users of the social network, the number of friend pairs in the network, and the length of sequence of
operations suggested by Johnny.

In the next m lines there are pairs of integers ai, bi that specify the identifiers of users that are friends
(1 ≤ ai, bi ≤ n, ai 6= bi); these numbers are separated by a single space. The (unordered) pairs of friends
are distinct.

The next k lines describe the sets Vi. Each of those lines contains sequence of integers si, vi1 , . . ., visi ,
separated by single spaces, where si (1 ≤ si ≤ n) is the size of Vi and vij are the elements.

The sum of si is not larger than 106.

Output

The output should contain n lines: i-th line should contain the word TAK if after the sequence of flips
proposed by Johnny the i-th user will have no friends, and NIE otherwise.

Page 10 of 21



Moscow International Workshop ACM ICPC 2016
Day 8, AMPPZ-2016, Thursday, November 17, 2016

Examples

standard input standard output

3 2 2

1 2

2 3

3 1 2 3

2 1 3

TAK

TAK

TAK

4 3 4

1 2

2 3

1 3

3 1 2 3

3 2 3 4

2 2 3

2 3 4

TAK

NIE

TAK

NIE

Note

The diagram showing the friendship relation for Sample 1 initially and after each operation:

2

3

1 2

3

1 2

3

1

The diagram showing the friends relation for Sample 2 in the beginning and after each operation:

1 2

34

1 2

34

1 2

34

1 2

34

1 2

34

Page 11 of 21



Moscow International Workshop ACM ICPC 2016
Day 8, AMPPZ-2016, Thursday, November 17, 2016

Problem G. Parking Lot

Input file: standard input

Output file: standard output

Time limit: 9 seconds
Memory limit: 256 mebibytes

The marketplace of town M is a popular tourist attraction, but it’s hard to get there without a car due
to a very peculiar traffic policy. The traffic department decided to remove all trams and buses from town
centre as they were impeding car traffic. But the cars require parking places which there aren’t many of
in the town centre. Thus, the small streets around marketplace were converted into very long parking
lots for parallel parking. Young Johnny doesn’t have a car yet but he’s already vigorously advocating for
this plan, because he got a job as a controller for one of the new parking lots. Unfortunately he’s not so
good at his new job, so he’ll definitely need your help.

The street Johnny was appointed to, has length d. His job is to tell the approaching drivers where they
should park their cars or inform them that their car is too long to fit. Formally he’s supposed to serve
two kinds of events:

• a car with length li and license plate pi approaches,

• the car with license plate pi leaves.

When a car approaches, Johnny has to find the shortest available contiguous unoccupied space where
the car would fit. If there is more than one such place, he should choose the one that is closest to the
marketplace (that is the earliest, looking from the start of parking lot). Car drivers are the masters of
parallel parking and their vehicles are so swift that they always park at the very beginning of the space
that Johnny finds; to the point that they can touch the preceding car, and in extreme situations they
can even touch with both the preceding and the following car. Such tight parking is not a problem even
when leaving the parking lot.

Input

The first line of input contains two integers d and q, separated by a single space, which denote the length
of parking lot and the number of events respectively (1 ≤ d ≤ 109, 1 ≤ q ≤ 106).

Each of the following q lines begins with a single letter P or O, which denote the kind of event (respectively
approach and departure of a car), followed by a single space and a license plate pi, which is a nonempty
string of up to 10 characters, each of which is either small Latin letter (a-z) or a digit (0-9).

If the line describes approach of a car, then it also contains, after a single space, an (integer) length li
(1 ≤ li ≤ 109) of the car.

Each car will try to find a parking place at most once: tourists never visit the marketplace more than
once, this is even more true if they couldn’t find parking place.

If the line describes departure of a car, then it contains nothing further. However, the license plate pi
is guaranteed to correspond to a car that already tried to find parking place. Note that the car didn’t
necessarily find the parking place and even in that case doesn’t have to depart immediately (that is other
cars can depart before it) or at all.

Output

The output should contain exactly q lines, each describing the result of the next event from input.

The result of an event describing the approach of a car is a single integer oi – the position (counting from
the beginning of parking lot) on which the car should be parked, or the word NIE, if it’s not possible to
park the car.

The result of an event describing the departure of a car is the word OK, if the car has actually parked
and is now leaving or the word BRAK otherwise.

Page 12 of 21



Moscow International Workshop ACM ICPC 2016
Day 8, AMPPZ-2016, Thursday, November 17, 2016

Example

standard input standard output

10 7

P dw12345 1

P dwr12345 2

P we11111 8

O dw12345

P d0icpc 3

P dw000xx 1

O we11111

0

1

NIE

OK

3

0

BRAK

Note

The state of parking lot after each operation is shown in the following diagram.

0 1 2 3 4 5 6 7 8 9 10

dw12345

dw12345 dwr12345

dw12345 dwr12345

dwr12345

d0icpc

dw000xx

dw000xx

dwr12345

dwr12345

dwr12345

(NIE: we11111)

(BRAK: we11111)

d0icpc

d0icpc

The cars dw12345 and dwr12345 park one after another, at positions 0 and 1 respectively. The car
we11111 is too long and can’t park. After the car dw12345 departs, d0icpc parks just behind dwr12345

at position 3, and then dw000xx parks at position 0, which has been made free by dw12345. Since we11111
didn’t find a parking place, the answer to its departure is BRAK.

Page 13 of 21



Moscow International Workshop ACM ICPC 2016
Day 8, AMPPZ-2016, Thursday, November 17, 2016

Problem H. Anagrams

Input file: standard input

Output file: standard output

Time limit: 1 second
Memory limit: 128 mebibytes

An anagram of a word w is any word obtained by rearranging (permuting) letters of w, including word
w itself. Anagrams are a passion of Johnny ever since he started playing Scrabble: whenever he has at
his disposal some collection of letters arranged as a word w he immediately starts rearranging them in all
possible ways, counting how many anagrams the word w has. Apparently Johnny is more interested in
anagrams than Scrabble, as it doesn’t matter for him at all, whether any of w’s anagrams has a meaning
and occurs in dictionary. Johnny quickly noticed that from different words of the same length he can
obtain different numbers of anagrams. When he decided that he knows how to efficiently compute the
number of anagrams of a given word he started to ponder the opposite problem, that is, how long is the
shortest word consisting only of small Latin letters (a-z) that has exactly n anagrams. This question
turned out too hard for Johnny, so is counting on your help with it.

Input

The first and only input line contains a single integer n (1 ≤ n ≤ 1012), the number of anagrams Johnny
wants to obtain.

Output

In the first and only output line you should print one integer: minimum possible length of a word
consisting of small Latin letters (a-z) that has exactly n anagrams.

Example

standard input standard output

12 4

Note

Word baca has 12 anagrams. Any shorter word has at most 6 anagrams, just like, e.g., bac.

Page 14 of 21



Moscow International Workshop ACM ICPC 2016
Day 8, AMPPZ-2016, Thursday, November 17, 2016

Problem I. Mountain Hike
Input file: standard input

Output file: standard output

Time limit: 1 second
Memory limit: 128 mebibytes

Johnny is particularly fond of hiking. Unfortunately, his knees are not what they used to be anymore,
and descending is particularly difficult for him. Hence his plans for the next Saturday are as follows: he
will start the hike at the Valley of Three Lakes and then ascend the Mount Doom. Then, he will take
a bus to the Valley of Five Lakes and ascend the Misty Mountain. Because of the knees problem, it is
crucial that both parts of the trip (ignoring the bus drive) consist only of ascending segments. Johnny
has already prepared a list of all ascending segments and determined the length of every such segment.
Each segment connects two locations. As he gets bored rather easily, both parts of his trip should be
also strictly disjoint. Help Johnny to determine the whole hike so that the total walking distance is as
small as possible.

Input

The first line of input contains two integers n and m, separated by single space, which denote the number
of locations and the number of segment respectively (2 ≤ n ≤ 1 000, 1 ≤ m ≤ 10 000). Each of the
following m lines contains three integers ai, bi, and xi, separated by single spaces, which describe the
i-th possible segment: from location ai to location bi of length xi (1 ≤ ai, bi ≤ n, 1 ≤ xi ≤ 106); every
such segment is ascending, that is height above mean sea level of its end location is strictly larger than
height above mean sea level of its start location.

The next line contains integers s1, t1, and finally the last line contains s2, t2 (1 ≤ si, ti ≤ n), separated by
single spaces, which denote the start and end locations of both parts of the trip, that is, Valley of Three
Lakes, Mount Doom, Valley of Five Lakes, and finally Misty Mountain respectively. You can assume
that s1 6= t1 and s2 6= t2, but should not make any further assumptions.

Output

The output should consist of exactly one line, containing either the smallest possible total walking distance
or the word NIE if it is not possible to plan the hike according to Johnny’s requirements.

Example

standard input standard output

5 5

1 3 1

2 3 1

3 4 1

3 5 1

1 4 3

1 4

2 5

5

4 5

1 2 1

1 3 1

1 4 1

2 4 1

3 4 1

1 4

2 3

NIE

Page 15 of 21



Moscow International Workshop ACM ICPC 2016
Day 8, AMPPZ-2016, Thursday, November 17, 2016

Note

Sample 1 describes the following locations and segments. There is exactly one way of choosing disjoint
paths from 1 to 4 and from 2 to 5, shown in bold. The total walking distance of the hike corresponding
to this choice is 5.

1 2

4

3

5

3

1 1

1 1

Sample 2 describes the following locations and segments. It is not possible to start at 2 and reach 3.

2

3 4

1

1

1

1

11

Page 16 of 21



Moscow International Workshop ACM ICPC 2016
Day 8, AMPPZ-2016, Thursday, November 17, 2016

Problem J. Sharing Chocolate

Input file: standard input

Output file: standard output

Time limit: 7 seconds
Memory limit: 256 mebibytes

Johnny is making a birthday party soon. Instead of candies this time he wants to treat his classmates
with chocolate. He was collecting chocolate bars for a long time, even though it was very hard for him to
restrain himself from eating them all! He couldn’t help but to have a bite from each of the bars, though –
depending on tastiness of a particular chocolate bar, his strong will, phase of the moon, and other factors
he ate one or more slices of chocolate. . . In the end he has chocolate bars of many different shapes. But
there are also many children in his class, and he needs to share the chocolate fairly.

He decided that in order to share the chocolate fairly he will perform the following operation called
bisplitting : Johnny takes the largest of chocolate bars (in terms of the number of chocolate cubes in it)
and cuts it twice in half, horizontally and vertically. Johnny doesn’t want to cut chocolate cubes in half
so he sometimes has to cut unevenly, but he’ll always do it as close to the half as possible – if a chocolate
bar had size w×h, then after bisplitting he’ll get bars of sizes bw2 c×b

h
2 c, b

w
2 c×d

h
2 e, d

w
2 e×b

h
2 c, d

w
2 e×d

h
2 e.

It may happen that some of the bars he obtains in this way have one or both dimensions of length 0, that
is the chocolate bar will be empty. If there’s more than one chocolate bar that has maximum number of
chocolate cubes, Johhny will pick from them the one with the maximum length of the longer edge.

Johnny decided that it will be best if the resulting chocolate bars won’t be too big, then he’ll get to
keep more chocolate for himself. Thus he wants to know (and you’ll have to help him with that) how
many chocolate cubes will be in the largest chocolate bar after he performs ki bisplitting operations, for
i = 1, 2, . . . , q — based on that information he’ll decide how long he should keep splitting the chocolate
bars.

Input

The first line of input contains two integers n and q (1 ≤ n ≤ 50 000, 1 ≤ q ≤ 100), separated by a single
space. They denote the number of chocolate bars Johnny has, and the number of queries Johnny will
make.

Each of the next n lines contains two integers separated by a single space. i-th of those lines contains wi

and hi, (1 ≤ wi, hi ≤ 109), denoting a chocolate bar with dimensions of wi × hi chocolate cubes.

Each of the next q lines contains a single non-negative integer. In i-th of those lines there is ki
(0 ≤ ki ≤ 1018). This is the query about the number of chocolate cubes that the largest chocolate
bar will have after Johnny performs bisplitting operation ki times starting from the initial set of choco-
late bars.

Output

The output should contain exactly q lines. Each of those lines should contain a single integer – the answer
to query in the same order as in the input.

Example

standard input standard output

2 4

5 10

7 7

2

3

10

1

16

15

6

49

Page 17 of 21



Moscow International Workshop ACM ICPC 2016
Day 8, AMPPZ-2016, Thursday, November 17, 2016

Note

The sets of chocolate bars after the first i = 0, 1, 2, 3 bisplittings, sorted from largest to smallest bar
(chocolate bars of sizes a× b and b× a are the same and are denoted as min(a, b)×max(a, b)):

• Starting set: one bar 5× 10 and one bar 7× 7;

• After first bisplitting: one bar 7× 7, two bars 3× 5, and two bars 2× 5;

• After second bisplitting: one bar 4× 4, two bars 3× 5, two bars 3× 4, two bars 2× 5, and one
bar 3× 3;

• After third bisplitting: two bars 3× 5, two bars 3× 4, two bars 2× 5, one bar 3× 3, and four
bars 2× 2.

Page 18 of 21



Moscow International Workshop ACM ICPC 2016
Day 8, AMPPZ-2016, Thursday, November 17, 2016

Problem K. Johnny-Bohr Model

Input file: standard input

Output file: standard output

Time limit: 1.5 seconds
Memory limit: 128 mebibytes

Johnny has been sick lately and he missed a few classes. He didn’t make much of it with a single exception:
physics is his passion, so he borrowed lecture notes from his friend. From those notes he learned that
he missed lecture about Bohr model of hydrogen atom and. . . apparently he didn’t learn anything else,
because based on the notes he reconstructed the following “Johnny-Bohr model”1

The electron orbiting around nucleus of a hydrogen atom can only stay at orbits with specific radii. Each
of those radii is associated with a particular energy of the electron and its angular momentum. The
angular momentum is quantized, that is, it can take any value that is a positive integer multiple of the
reduced Planck constant ~ (also known as Dirac constant). Due to this it is useful to number orbits with
natural numbers, such that orbit number n corresponds to angular momentum of n · ~. An electron can
jump from orbit n1 to a lower orbit n2 (n2 < n1) — in that case the energy difference is emitted as a
photon with appropriate frequency and wavelength. Johnny-Bohr model does not foresee the opposite
situation, that is, absorption of a photon by atom and transfer of an electron to a higher orbit. The
model precisely specifies to which lower orbits an electron can jump. In his friend’s notebook a multiset
B is written which has the following property: an electron can jump from orbit a to an orbit bab c for any
b ∈ B. The electron can then jump from a new orbit a′ again according to that rule. In particular the
Johnny-Bohr model allows an electron to jump to the (final) orbit number 0, that is, to “fall” onto the
nucleus. Just as with the original Bohr model, Johnny can’t prove that this model really describes the
way hydrogen atom behaves, however he can assure you that it agrees with experimental data (at least
the data from Johnny’s thought experiments). Proud of his deep understanding of the problem, Johnny
noticed that it gives raise to a few interesting questions which may help him better understand the way
atoms behave. The most important of the questions is the following: “If an electron starts at an orbit
number n, to how many different orbits (including n) can the electron move in any number (possibly zero)
of jumps?”

Input

The first line of input file contains two integers n and m (1 ≤ n ≤ 1015, 1 ≤ m ≤ 10), denoting the
starting orbit number of the electron and the size of multiset B, respectively. The second (and last) line
of input file contains sequence of m integers bi, 1 ≤ bi ≤ 1015, separated by single spaces; those are the
elements of the multiset B.

Output

In the first and only line you should output a single integer – the number of different orbits on which the
electron could end up after any number of jumps starting from orbit number n.

Example

standard input standard output

20 2

2 3

8

Note

Starting from an orbit n = 20 and with B = {2, 3}, an electron can jump (in 0 or more jumps) to any of
the following eight orbits: 20, 10, 6, 5, 3, 2, 1, 0.

1Even though the model has name of one of the greatest physicists it has not much to do with physics: Johnny’s friend
isn’t particularly skilled when it comes to taking notes, and Johnny’s fever is not helping!

Page 19 of 21



Moscow International Workshop ACM ICPC 2016
Day 8, AMPPZ-2016, Thursday, November 17, 2016

Problem L. Constitutional Tribunal
Input file: standard input

Output file: standard output

Time limit: 1 second
Memory limit: 128 mebibytes

The Constitutional Tribunal will be re-organized due to (apparently) low efficiency of their work. Before
that happens the Tribunal will not accept any new pending laws until Chief Judge, the Judge number 1,
makes a ruling on all the pending laws that were brought to the Tribunal before the re-organization. All
of his subordinates, the Judges with numbers greater than 1, work according to old schedule: for each
i > 1, the Judge number i comes to work at 8:00 and immediately takes ci pending laws from his inbox
(or all of them if there are less than ci pending laws in his inbox), which he then evaluates, and at the end
of the day, at 16:00, he puts all of the evaluated laws in his outbox. After 16:00 the laws are transferred
to the next Judge: from outbox of Judge number i the laws are moved to inbox of his superior – Judge
number pi. Of course the final superior of all Judges is the Chief Judge, that is, the Judge number 1.
The Chief Judge wants to know, when all the pending laws, will end up in his inbox. For this he came to
work earlier today, and personally counted how many pending laws are in the inboxes of other Judges.
It turned out that inbox of Judge number i (for i > 1) contains si pending laws. Help the Chief Judge
to compute how many days will pass until all the pending laws will end up in his inbox, so that he can
finally make a ruling on them.

Input

The input contains multiple testcases. The first line of input contains the number of testcases Z (Z ≥ 1).
Then all the testcases follow.

Each testcase begins with a line with a single integer n (2 ≤ n ≤ 5000), denoting the number of Judges
in the Constitutional Tribunal. The next line contains n − 1 integers s2, s3, . . . , sn, separated by single
spaces, where si (0 ≤ si ≤ 109) denotes the number of pending laws that are currently in the inbox of
Judge number i. The next line contains n − 1 integers p2, p3, . . . , pn, separated by single spaces, where
pi (1 ≤ pi < i) means that Judge i is subordinate of a Judge number pi. The last line (for this testcase)
contains n− 1 integers c2, c3, . . . , cn, separated by single spaces, where ci (1 ≤ ci ≤ 109) is the number of
laws that Judge number i evaluates every day.

The sum of n over all testcases is no larger than 5000.

Output

For each testcase you should output a single line containing one integer: the number of days that will
pass until all the pending laws will end up in Chief Judge’s inbox.

Example

standard input standard output

2

4

10 7 9

1 2 2

5 3 3

4

4 0 5

1 2 3

5 1 2

6

7

Note

The diagram shows the state in the morning of each day. The numbers of the days are written in bold

Page 20 of 21



Moscow International Workshop ACM ICPC 2016
Day 8, AMPPZ-2016, Thursday, November 17, 2016

above, and the numbers of the Judges are written on the left. The Chief Judge is denoted by circle, while
for all the other judges their inboxes are represented by rectangles. The arrows denote the superiority
relation. The rectangle representing Judge number i inbox has height ci, marked on the right and width
large enough to hold all the pending laws in his inbox. The laws in inbox are shaded, and their number is
also written in the top left corner. Judge number i (i > 1) evaluates up to ci laws every day — graphically
this corresponds to “removing” the first column of laws from his inbox, and “shifting” of the remaining
laws to the left. Removed laws are (at the end of the day) moved to the rectangle of superior Judge pi.

First testcase:

1

2

0

5

3, 4

1 2 3

0 0
3

4

0 0

5

0 0

6

0

0 0

1

2

3, 4

5

3

10

9 6 1 3

1

11 12

4

6

11

7

Second testcase:

1

3

4

2

0 1 2 3 4 5 6

5

1

2

7

0

4

2

0

3

1

1

3

0

1

2

0

1

1

0

1

0

0

1

0

0

0

5 3

Page 21 of 21


