
Persistent Data Structures
MIPT Training Camp, Division B, November 16, 2016

Problem A. Snowmen
Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: 256 MiB

It’s winter. Year 2222. The news is: cloning of snowmen becomes available.

Snowman consists of zero or more snowballs put one atop another. Each snowball has some mass. Cloning
of a snowman produces its exact copy.

Andrew initially has one empty snowman and performs a sequence of the following operations. Clone one
of his snowmen and

• either put a new snowball on the top of the new snowman;

• or remove the topmost snowball from the new snowman (the new snoman must be nonemtpy).

He wants to know the total mass of all his snowmen after he performs all operations.

Input
The first line of input contains an integer n (1 ≤ n ≤ 200 000). The following lines describe operations,
the i-th operation is on of the following:

• t m — clone the snowman number t (0 ≤ t < i) to get the snowman number i, and put the ball with
the mass m on the top of the snowman number i (0 < m ≤ 1000);

• t 0 — clone the snowman number t (0 ≤ t < i) to get the snowman number i and remove topmost
snowball. It is guaranteed that the snowman number t is not empty.

All masses are integer.

Output
Output the total mass of all snowmen in the end.

Examples
standard input standard output

8
0 1
1 5
2 4
3 2
4 3
5 0
6 6
1 0

74

Page 1 of 7



Persistent Data Structures
MIPT Training Camp, Division B, November 16, 2016

Problem B. Persistent Queue
Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: 256 MiB

Persistent data structures are designed to allow access and modification of any version of data structure.
In this problem you are asked to implement persistent queue.

Queue is the data structure that maintains a list of integer numbers and supports two operations: push
and pop. Operation push(x) adds x to the end of the list. Operation pop returns the first element of the
list and removes it.

In persistent version of queue each operation takes one additional argument v. Initially the queue is said
to have version 0. Consider the i-th operation on queue. If it is push(v, x), the number x is added to the
end of the v-th version of queue and the resulting queue is assigned version i (the v-th version is not
modified). If it is pop(v), the front number is removed from the v-th version of queue and the resulting
queue is assigned version i (similarly, version v remains unchanged).

Given a sequence of operations on persistent queue, print the result of all pop operations.

Input
The first line of the input file contains n — the number of operations (1 ≤ n ≤ 200 000). The following
n lines describe operations. The i-th of these lines describes the i-th operation. Operation push(v, x) is
described as “1 v x”, operation pop(v) is described as “-1 v”. It is guaranteed that pop is never applied
to an empty queue. Elements pushed to the queue fit standard signed 32-bit integer type.

Output
For each pop operation print the element that was extracted.

Examples
standard input standard output

10
1 0 1
1 1 2
1 2 3
1 2 4
-1 3
-1 5
-1 6
-1 4
-1 8
-1 9

1
2
3
1
2
4

Page 2 of 7



Persistent Data Structures
MIPT Training Camp, Division B, November 16, 2016

Problem C. Persistent Array
Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: 256 MiB

You are given the initial revision of an array. You have to perform two operations on it.

• create i j x (anew = ai; anew[j] = x) — create the new revision from the i-th one, assign the j-th
element to x, other elements remain the same as in the i-th revision.

• get i j (print ai[j]) — report the value of the j-th element of the i-th revision.

Input
Input contains integer n (1 ≤ n ≤ 105), followed by elements of the initial revision of the array. The initial
revision has number 1. The number of queries m (1 ≤ m ≤ 105) follows, then m queries. See sample input
for queries formatting. The new revision of the array created when there are k revisions, get number k+1.
All elements of the array are integers from 0 to 109, inclusive. Array is indexed from 1 to n, inclusive.

Output
For each get query output the corresponding element.

Example
standard input standard output

6
1 2 3 4 5 6
11
create 1 6 10
create 2 5 8
create 1 5 30
get 1 6
get 1 5
get 2 6
get 2 5
get 3 6
get 3 5
get 4 6
get 4 5

6
5
10
5
10
8
6
30

Page 3 of 7



Persistent Data Structures
MIPT Training Camp, Division B, November 16, 2016

Problem D. Persistent Multiset
Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: 256 MiB

You have to implement partially persistent multiset (multiset is a set that can contains several copies of
the same element). The multiset contains positive integers not exceeding m. It must support the following
operations:

• add x — add x to the multiset;

• remove x — remove one of the elements equal to x from the multiset if there is at least one. If there
are none, the multiset doesn’t change.

• different v — output the number of different x, that are contained in revision v of the multiset;

• unique v — output the number of different x, such that there is exactly one x contained in revision
v of the multiset;

• count x v — output the number of copies of x that are contained in revision v of the multiset.

Initially the multiset is empty and has revision 0. After the i-th operation it has revision i.

Input
The first line contains two integers: n, m — the number of operations to perform and the maximal
possible value in the multiset (1 ≤ n,m ≤ 200 000). The following n lines describe operations. To force
online answers, instead of version numbers for all operations that require version you are given an integer
y (0 ≤ y ≤ n). Let s be the sum of answers for all preceeding different, unique and count opearrations.
The number v for the i-th operation if it is different, unique or count, is calculated as v = (y+s) mod i.
All values x for add, remove and count queries are positive integers not exceeding m.

Output
Output answers for different, unique and count operations, one on a line.

Examples
standard input standard output Notes

9 3
add 2
add 1
add 2
different 3
unique 1
remove 2
unique 3
count 3 1
count 2 1

2
1
2
0
1

Actual queries:
add 2
add 1
add 2
different 3
unique 3
remove 2
unique 6
count 3 6
count 2 6

Page 4 of 7



Persistent Data Structures
MIPT Training Camp, Division B, November 16, 2016

Problem E. Rollback
Input file: standard input
Output file: standard output
Time limit: 3 seconds
Memory limit: 256 MiB

Sergey has an array of integers a1, a2, . . . , an, 1 ≤ ai ≤ m. He wants to answer the following questions:
given l what is the minimal r such that there are at least k different values among al, al+1, . . . , ar.

Input
The first line of input contains two integers: n and m (1 ≤ n,m ≤ 100 000). The second line cotnains n
integers a1, a2, . . . , an (1 ≤ ai ≤ m).

The following line contains q — the number of queries to answer. (1 ≤ q ≤ 100 000). To answer the queries
online you must maintain an integer p, initially p = 0. Each query is specified with two integers xi and yi,
use them to get query parameters: li = ((xi + p) mod n) + 1, ki = ((yi + p) mod m) + 1 (1 ≤ li, xi ≤ n,
1 ≤ ki, yi ≤ m). Let the answer to the i-th query be ri. After answering the question, set p equal to ri.

Output
For each query output the minimal value of ri, of 0 if there is no such ri.

Examples
standard input standard output

7 3
1 2 1 3 1 2 1
4
7 3
7 1
7 1
2 2

1
4
0
6

Page 5 of 7



Persistent Data Structures
MIPT Training Camp, Division B, November 16, 2016

Problem F. Intercity Express
Input file: standard input
Output file: standard output
Time limit: 3 seconds
Memory limit: 256 MiB

Andrew is developing the a system for train ticket sales. He is going to test it on Intercity Express line that
connects two large cities and has n− 2 intermediate stations, so there are a total of n stations numbered
from 1 to n.

Intercity Express train has s seats numbered from 1 to s. In test mode the system has access to a database
that contains already sold tickets in direction from station 1 to station n and needs to answer questions
whether it is possible to sell a ticket from station a to station b and if so, what is the minimal number
of seat that is vacant on all segments between a and b. Initially the system will have read only access, so
even if there is a vacant seat, it should report so, but should not modify the data to report it reserved.

Help Andrew to test his system by writing a program that would answer such questions.

Input
The first line of the input file contains n — the number of stations, s — the number of seats and m —
the number of already sold tickets (2 ≤ n ≤ 109, 1 ≤ s ≤ 100 000, 0 ≤ m ≤ 100 000). The following m
lines describe tickets, each ticket is described by ci, ai, and bi — the seat that the owner of the ticket
occupies, the station from which the ticket is sold, and the station to which the ticket is sold (1 ≤ ci ≤ s,
1 ≤ ai < bi ≤ n).

The following line contains q — the number of queries (1 ≤ q ≤ 100 000). A special value p must be
maintained when reading queries. Initially p = 0. The following 2q integers describe queries. Each query is
described with two numbers: xi and yi (xi < yi). To get cities a and b between which the seat availability
is requested use the following formulae: a = xi + p, b = yi + p. The answer to the query is 0 if there is no
seat that is vacant on each segment between a and b, or the minimal number of seat that is vacant.

After answering the query, assign the answer for the query to p.

Output
For each query output the answer to it.

Example
standard input standard output

5 3 5
1 2 5
2 1 2
2 4 5
3 2 3
3 3 4
10
1 2 1 2 1 2 2 3 -2 0
2 4 1 3 1 4 2 5 1 5

1
2
2
3
0
2
0
0
0
0

Note that actual queries are (1, 2), (2, 3), (3, 4), (4, 5), (1, 3), (2, 4), (3, 5), (1, 4), (2, 5), (1, 5).

Page 6 of 7



Persistent Data Structures
MIPT Training Camp, Division B, November 16, 2016

Problem G. Urns and Balls
Input file: standard input
Output file: standard output
Time limit: 2.5 seconds
Memory limit: 256 MiB

Consider n different urns and n different balls. Initially, there is one ball in each urn.

There is a special device designed to move the balls. Using this device is simple. First, you choose some
range of consecutive urns. The device then lifts all the balls form these urns. After that, you specify the
destination which is another range of urns having the same length. The device then moves the lifted balls
and places them in the destination urns. Each urn can contain any number of balls.

Given a sequence of movements for this device, find where will each of the balls be placed after all these
movements.

Input
First line contains two integers n and m, the number of urns and the number of movements
(1 ≤ n ≤ 100 000, 1 ≤ m ≤ 50 000). Each of the next m lines contain three integers counti, fromi

and toi which mean that the device simultaneously moves all balls from urn fromi to urn toi, all balls
from fromi + 1 to urn toi + 1, . . ., all balls from urn fromi + counti − 1 to urn toi + counti − 1
(1 ≤ counti, fromi, toi ≤ n, max(fromi, toi) + counti ≤ n+ 1).

Output
Output exactly n numbers from 1 to n: the final positions of all balls. The first number is the final position
of the ball which was initially in urn 1, the second number is the final position of the ball from urn 2, and
so on.

Examples
standard input standard output

2 3
1 1 2
1 2 1
1 2 1

1 1

10 3
1 9 2
3 7 3
8 3 1

1 2 1 2 3 4 1 2 2 8

Page 7 of 7


