
Cartesian tree
Theory and applications

Gleb Evstropov
glebshp@yandex.ru

November, 14, 2016

1 Some notations

• u, v, w — some nodes of the binary search tree;

• parent(v) — the parent of some node v in the binary search tree. If v is the root
then parent(v) = NIL;

• left(v) — left child of some node v in the binary search tree. If the left subtree is
empty, then left(v) = NIL;

• right(v) — right child of some node v in the binary search tree. If the right subtree
is empty, then right(v) = NIL;

• key(v) — the value of a node v that affects the tree structure;

• x(v) — another way to denote keys in Cartesian trees. Usually, x(v) = key(v).

• y(v) — some additional value associated with the node v and used to build the tree;

• subtree(v) — the set of all nodes that lie inside the subtree of some node v (v is
also included);

• size(v) — the size of the subtree of some node v;

• xl(v) — the minimum key in the subtree of the node v, that is:

xl(v) = min
u∈subtree(v)

key(u)

• Same as xl(v) we define xr(v) as the maximum key in the subtree of the node v:

xr(v) = max
u∈subtree(v)

key(u)

• depth(v) is the length of the path from root to v. depth(root) = 0.

• height(v) is the difference max(depth(u))− depth(v), where u ∈ subtree(v).

1

2 Key points and definitions

• Greedy algorithm of finding an increasing subsequence: take first element that is
greater than current, “left ladder”. The expected length of the result on a random
permutation is O(log n).

• BST stands for binary search tree, that is a binary rooted tree with some keys
associated with every node, and the following two conditions hold:

key(u) < key(v),∀u, v : u ∈ subtree(left(v))

and
key(u) > key(v),∀u, v : u ∈ subtree(right(v))

• For any pair of nodes of any binary search tree v and u:
u ∈ subtree(v) if and only if xl(v) ≤ key(u) ≤ xr(v)

• For any tree and some keys stored in nodes of that tree we say that heap condition
holds if for any v that is not the root:

key(parent(v)) ≥ key(v)

• Binary search tree of size n is balanced if it’s height is O(logn).

• Cartesian tree or treap is a balanced binary search tree, where each node is assigned
some random values y(v), which satisfy to the heap condition. Hereafter we will
treat y(v) as a random permutation.

• Cartesian tree is uniquely determined by a set of pairs (xi, yi), such that all xi are
pairwise distinct and all yi are pairwise distinct.

• Node v is an ancestor of a node u if and only if for every w 6= v such that
min(key(v), key(u)) ≤ key(w) ≤ max(key(v), key(u)) it’s y is smaller than the
y of v, i.e. y(v) > y(w).

• Linear algorithm to build Cartesian tree having a sorted pairs using stack.

• The expected depth of an i-th node (in the order of left-right traversal) is

j<n∑
j=0

1

|j − i|+ 1
≤ 2 ·

j≤n∑
j=1

1

j
= O(log n)

.

• We can treat a Cartesian tree as an array, if we replace x(v) with it’s relative position
on the tree. The data structure is called Implicit-key Cartesian tree.

• Persistent Cartesian tree cannot use fixed random values y(v), instead, two subtrees
are merge with probability proportional to their sizes.

2

3 Some problems to think about

• Prove that if in merge operation one picks the root equiprobable (i.e. both l and r
has probability 0.5 to become the root), the expected height is n

2
.

• Prove that if in merge operation one picks the root proportional to the height (i.e.

l has probability height(l)
height(l)+height(r)

to become the root), the expected height is
√
n.

• Prove that it’s impossible to build Cartesian tree in linear time if the set of keys is
not-sorted.

• Prove that it’s impossible to merge two Cartesian trees of size n in o(n) time, if
there are no guarantees on key ranges.

• What is the expected height of the tree if we pick y’s as integers in range from 0 to
p? Consider the case p = 1 first.

• Can you prove O(log n) expectation for height(root)?

3

	Some notations
	Key points and definitions
	Some problems to think about

