
Sqrt-heuristics, examples and applications
Lecture notes

Gleb Evstropov
glebshp@yandex.ru

November 12, 2016

In general, sqrt-heuristcs are methods to reduce the complexity and obtain something
containing

√
n (or close) multiplier, hence the name. During the lecture we will consider

different examples illustrating different way to approach problems.
Sqrt-decomposition is way to build two-layer data structure that combines two

different approaches to answer queries in order to optimize the complexity.
Problem 1. You are given a sequence of positive integers a1, a2, . . . , an. You should

answer online for queries of two types:

1. Given some index p and positive integer x, set ap = x.

2. Throw a ball to position p. Then it moves to position p + ap, then p + ap + ap+ap

and so on, i.e. each time it jumps ai positions forward. Print the number of jumps
before the ball leaves the sequence.

Solution sketch: make
√
n buckets, in each bucket compute the number of jumps to leave

the bucket and the resulting position.
Problem 2. Implement Dijkstra’s algorithm in O(n

√
n + m) time. Solution sketch:

use sqrt-decomposition to build a data structure that removes mininum in O(
√
n) time

and relax minimum in O(1).
Problem 3. Batching queries. Given a tree T of size n answer queries of two

types:

1. Paint vertex v black.

2. Find the nearest black vertex for vertex v.

Solution sketch: rebuild the minimum distances each
√
n paint queries.

Problem 4. Offline batching. Given a tree T of size n answer queries of three
types:

1. Paint vertex v black.

1



2. Paint vertex v white.

3. Find the nearest black vertex for vertex v.

Solution sketch: rebuild the minimum distances each
√
n paint queries, always put inter-

esting vertices in active set.
Note: both tree problems can be efficiently solved centroid-decomposition technique

but this is a topic for another lecture.
Usually, you might be not given any direct queries, but the input is processed as

separate instances. Dividing instances in small and large and processing them in different
ways might lead to complexity optimizations.

Problem 5. You are given a sequence of colors a1, a2, . . . , an. We say that color c
dominates segment [l, r] if the number of elements of this color on segment is strictly
greater than the number of all other elements. For each color, compute the number of
segments it dominates. Solution sketch: process small and large queries in different way.
If there are few elements of some color it can dominate only short segments.

Problem 6. Given an undirected graph G = (V,E) compute the number of triangles,
i.e. the cycles of length 3. Sketch of solution 1: split vertices in bold and normal (by
value deg(v)). Compute the triangles that have at least one normal vertex by trying all
pairs of neighbours. Compute triangles on bold vertices by trying all triples. Sketch of
solution 2: for each edge uv compute the answer in min(deg(u), deg(v)).

To process range-queries there is a special sqrt-trick usually referred as Mo’s algorithm.
Problem 7. Given a sequence a1, a2, . . . , an and a set of range queires (li, ri), for

each query compute
∑

c count(li, ri, c)
2. Solution sketch: use the Mo’s technique to move

left and right borders of the segment by no more than 1 at each step. Break left ends in
sqrt-buckets and process them separately. Go online with extra

√
n in memory complexity.

Here are just some extra problems in case there will be enough time left:
Problem 8. Given a set of string s1, s2, . . . , sn of total length L, proove that each

path in the compressed trie containing all these strings has no more than
√
L nodes.

Problem 9. Given a tree T of size n with each vertex painted some color, answer
the queries (c1, c2 — the number of pairs (v, u) such that u lies in the subtree of v, v has
color c1 and u has color c2.

2


