
A B C D E F G H I J K

CCPC Regional Contest Editorial

November 16th, 2016

by Mikhail Tikhomirov (MIPT)

Moscow ACM ICPC Workshop, MIPT, 2016

A B C D E F G H I J K

A. Hanso vs Genji

A cylinder is flying in 3D space with an initial velocity under constant
acceleration force. The axis of the cylinder is always aligned with the
speed vector. Determine if the cylinder will ever hit a given point q.

Outline: reduce to a 2D problem, solve some polynomial inequalities.

A B C D E F G H I J K

A. Hanso vs Genji

A cylinder is flying in 3D space with an initial velocity under constant
acceleration force. The axis of the cylinder is always aligned with the
speed vector. Determine if the cylinder will ever hit a given point q.

Outline: reduce to a 2D problem, solve some polynomial inequalities.

A B C D E F G H I J K

A. Hanso vs Genji

Let v be the initial speed vector, and g be the gravitational force.
Consider π — the plane containing the initial position of mass center,
and parallel to v and g . Clearly, the mass center will always stay inside
this plane. It is also evident that the distance from any fixed point of the
cylinder to this plane will remain constant.

Let us cut the cylinder with a plane parallel to π that passes through q.
The intersection is either empty or a rectangle. It is this rectangle that
has the change to hit the point q. Also note that it behaves like a full 2D
analogue of the cylinder (if we take its center to be the mass center). We
can thus reduce to a 2D version of the problem. Introduce a 2D
coordinate system in a suitable way.

A B C D E F G H I J K

A. Hanso vs Genji

Let v be the initial speed vector, and g be the gravitational force.
Consider π — the plane containing the initial position of mass center,
and parallel to v and g . Clearly, the mass center will always stay inside
this plane. It is also evident that the distance from any fixed point of the
cylinder to this plane will remain constant.

Let us cut the cylinder with a plane parallel to π that passes through q.
The intersection is either empty or a rectangle. It is this rectangle that
has the change to hit the point q. Also note that it behaves like a full 2D
analogue of the cylinder (if we take its center to be the mass center). We
can thus reduce to a 2D version of the problem. Introduce a 2D
coordinate system in a suitable way.

A B C D E F G H I J K

A. Hanso vs Genji

Let the center mass move according to the rule p(x) = (x , vyx − gx2/2),
the speed vector is then equal to v(x) = (1, vy − gx). Also let
u(x) = (vy − gx ,−1) be the vector orthogonal to v .

Assume that the rectangle’s speed-aligned side’s length is equal to L, and
the orthogonal side’s length is equal to W .

The rectangle contains a point q at time moment x iff∣∣∣∣(q − p(x),
v(x)

|v(x)|

)∣∣∣∣ 6 L,

∣∣∣∣(q − p(x),
u(x)

|u(x)|

)∣∣∣∣ 6 W .

Here (·, ·) stands for dot product.

Consider the first inequality (the second is almost analogous). After
squaring we obtain an equivalent form:

(q − p(x), v(x))2 6 L2|v(x)|2.

All vector coordinates are polynomials in x . It can be checked that this is
a polynomial inequality of degree 6.

A B C D E F G H I J K

A. Hanso vs Genji

Let the center mass move according to the rule p(x) = (x , vyx − gx2/2),
the speed vector is then equal to v(x) = (1, vy − gx). Also let
u(x) = (vy − gx ,−1) be the vector orthogonal to v .

Assume that the rectangle’s speed-aligned side’s length is equal to L, and
the orthogonal side’s length is equal to W .

The rectangle contains a point q at time moment x iff∣∣∣∣(q − p(x),
v(x)

|v(x)|

)∣∣∣∣ 6 L,

∣∣∣∣(q − p(x),
u(x)

|u(x)|

)∣∣∣∣ 6 W .

Here (·, ·) stands for dot product.

Consider the first inequality (the second is almost analogous). After
squaring we obtain an equivalent form:

(q − p(x), v(x))2 6 L2|v(x)|2.

All vector coordinates are polynomials in x . It can be checked that this is
a polynomial inequality of degree 6.

A B C D E F G H I J K

A. Hanso vs Genji

Let the center mass move according to the rule p(x) = (x , vyx − gx2/2),
the speed vector is then equal to v(x) = (1, vy − gx). Also let
u(x) = (vy − gx ,−1) be the vector orthogonal to v .

Assume that the rectangle’s speed-aligned side’s length is equal to L, and
the orthogonal side’s length is equal to W .

The rectangle contains a point q at time moment x iff∣∣∣∣(q − p(x),
v(x)

|v(x)|

)∣∣∣∣ 6 L,

∣∣∣∣(q − p(x),
u(x)

|u(x)|

)∣∣∣∣ 6 W .

Here (·, ·) stands for dot product.

Consider the first inequality (the second is almost analogous). After
squaring we obtain an equivalent form:

(q − p(x), v(x))2 6 L2|v(x)|2.

All vector coordinates are polynomials in x . It can be checked that this is
a polynomial inequality of degree 6.

A B C D E F G H I J K

A. Hanso vs Genji

How does one find the solution domain of an arbitrary polynomial
inequality? We will describe a method for finding roots of an arbitrary
polynomial; the method can be upgraded for finding the domain too.

Let us have P(x) = 0.

Recursively solve for P ′(x) = 0, where P ′ is a formal derivative of P.
There is at most one root of P between two consecutive roots of P ′, use
binary search to find or discard them.

Once we have degP = 1, solving the equation is trivial.

To obtain the solution we have to intersect the domains for two
inequalities. Each of them is a union of several segments, thus the task is
straightforward.

Might take several tries for precision issues if the moon phase is wrong.

A number of other numerical approaches is available. May have different
odds to pass depending on details.

A B C D E F G H I J K

A. Hanso vs Genji

How does one find the solution domain of an arbitrary polynomial
inequality? We will describe a method for finding roots of an arbitrary
polynomial; the method can be upgraded for finding the domain too.

Let us have P(x) = 0.

Recursively solve for P ′(x) = 0, where P ′ is a formal derivative of P.
There is at most one root of P between two consecutive roots of P ′, use
binary search to find or discard them.

Once we have degP = 1, solving the equation is trivial.

To obtain the solution we have to intersect the domains for two
inequalities. Each of them is a union of several segments, thus the task is
straightforward.

Might take several tries for precision issues if the moon phase is wrong.

A number of other numerical approaches is available. May have different
odds to pass depending on details.

A B C D E F G H I J K

A. Hanso vs Genji

How does one find the solution domain of an arbitrary polynomial
inequality? We will describe a method for finding roots of an arbitrary
polynomial; the method can be upgraded for finding the domain too.

Let us have P(x) = 0.

Recursively solve for P ′(x) = 0, where P ′ is a formal derivative of P.
There is at most one root of P between two consecutive roots of P ′, use
binary search to find or discard them.

Once we have degP = 1, solving the equation is trivial.

To obtain the solution we have to intersect the domains for two
inequalities. Each of them is a union of several segments, thus the task is
straightforward.

Might take several tries for precision issues if the moon phase is wrong.

A number of other numerical approaches is available. May have different
odds to pass depending on details.

A B C D E F G H I J K

A. Hanso vs Genji

How does one find the solution domain of an arbitrary polynomial
inequality? We will describe a method for finding roots of an arbitrary
polynomial; the method can be upgraded for finding the domain too.

Let us have P(x) = 0.

Recursively solve for P ′(x) = 0, where P ′ is a formal derivative of P.
There is at most one root of P between two consecutive roots of P ′, use
binary search to find or discard them.

Once we have degP = 1, solving the equation is trivial.

To obtain the solution we have to intersect the domains for two
inequalities. Each of them is a union of several segments, thus the task is
straightforward.

Might take several tries for precision issues if the moon phase is wrong.

A number of other numerical approaches is available. May have different
odds to pass depending on details.

A B C D E F G H I J K

A. Hanso vs Genji

How does one find the solution domain of an arbitrary polynomial
inequality? We will describe a method for finding roots of an arbitrary
polynomial; the method can be upgraded for finding the domain too.

Let us have P(x) = 0.

Recursively solve for P ′(x) = 0, where P ′ is a formal derivative of P.
There is at most one root of P between two consecutive roots of P ′, use
binary search to find or discard them.

Once we have degP = 1, solving the equation is trivial.

To obtain the solution we have to intersect the domains for two
inequalities. Each of them is a union of several segments, thus the task is
straightforward.

Might take several tries for precision issues if the moon phase is wrong.

A number of other numerical approaches is available. May have different
odds to pass depending on details.

A B C D E F G H I J K

A. Hanso vs Genji

How does one find the solution domain of an arbitrary polynomial
inequality? We will describe a method for finding roots of an arbitrary
polynomial; the method can be upgraded for finding the domain too.

Let us have P(x) = 0.

Recursively solve for P ′(x) = 0, where P ′ is a formal derivative of P.
There is at most one root of P between two consecutive roots of P ′, use
binary search to find or discard them.

Once we have degP = 1, solving the equation is trivial.

To obtain the solution we have to intersect the domains for two
inequalities. Each of them is a union of several segments, thus the task is
straightforward.

Might take several tries for precision issues if the moon phase is wrong.

A number of other numerical approaches is available. May have different
odds to pass depending on details.

A B C D E F G H I J K

A. Hanso vs Genji

How does one find the solution domain of an arbitrary polynomial
inequality? We will describe a method for finding roots of an arbitrary
polynomial; the method can be upgraded for finding the domain too.

Let us have P(x) = 0.

Recursively solve for P ′(x) = 0, where P ′ is a formal derivative of P.
There is at most one root of P between two consecutive roots of P ′, use
binary search to find or discard them.

Once we have degP = 1, solving the equation is trivial.

To obtain the solution we have to intersect the domains for two
inequalities. Each of them is a union of several segments, thus the task is
straightforward.

Might take several tries for precision issues if the moon phase is wrong.

A number of other numerical approaches is available. May have different
odds to pass depending on details.

A B C D E F G H I J K

B. Fraction

Compute the value of chain fraction as a reduced rational number.

Outline: just do the basic fractions maniplations and reduce by GCD.

The numbers were so small you could even go with int’s for values.

A B C D E F G H I J K

B. Fraction

Compute the value of chain fraction as a reduced rational number.

Outline: just do the basic fractions maniplations and reduce by GCD.

The numbers were so small you could even go with int’s for values.

A B C D E F G H I J K

B. Fraction

Compute the value of chain fraction as a reduced rational number.

Outline: just do the basic fractions maniplations and reduce by GCD.

The numbers were so small you could even go with int’s for values.

A B C D E F G H I J K

C. Rotate string

We call a string representative if it’s equal to its least cyclic shift. Given
a string s, find the number of representative strings that are
lexicographically smaller or equal to s.

Outline: count the number of “bad” strings such that all their cyclic
shifts are greater than s. Use inclusion-exclusion to account for
periodicity.

A B C D E F G H I J K

C. Rotate string

We call a string representative if it’s equal to its least cyclic shift. Given
a string s, find the number of representative strings that are
lexicographically smaller or equal to s.

Outline: count the number of “bad” strings such that all their cyclic
shifts are greater than s. Use inclusion-exclusion to account for
periodicity.

A B C D E F G H I J K

C. Rotate string

An algorithm for checking if all substrings of t are greater than
corresponding prefixes of s:

For current position i store maximal l such that
t[i − l + 1..i] = s[1..i].

To append a single character c , repeatedly apply prefix-function of s
to i . On each iteration ensure that continuation of the substring
that matches until i does not fall under the prefix of s.

How do we apply this idea to check the same property for cyclic shifts?
The only difference is that now we assume that at the start l is the
maximal suffix of t that matches prefix of s. In the end l has to come to
its original value.

A B C D E F G H I J K

C. Rotate string

An algorithm for checking if all substrings of t are greater than
corresponding prefixes of s:

For current position i store maximal l such that
t[i − l + 1..i] = s[1..i].

To append a single character c , repeatedly apply prefix-function of s
to i . On each iteration ensure that continuation of the substring
that matches until i does not fall under the prefix of s.

How do we apply this idea to check the same property for cyclic shifts?
The only difference is that now we assume that at the start l is the
maximal suffix of t that matches prefix of s. In the end l has to come to
its original value.

A B C D E F G H I J K

C. Rotate string

An algorithm for checking if all substrings of t are greater than
corresponding prefixes of s:

For current position i store maximal l such that
t[i − l + 1..i] = s[1..i].

To append a single character c , repeatedly apply prefix-function of s
to i . On each iteration ensure that continuation of the substring
that matches until i does not fall under the prefix of s.

How do we apply this idea to check the same property for cyclic shifts?
The only difference is that now we assume that at the start l is the
maximal suffix of t that matches prefix of s. In the end l has to come to
its original value.

A B C D E F G H I J K

C. Rotate string

An algorithm for checking if all substrings of t are greater than
corresponding prefixes of s:

For current position i store maximal l such that
t[i − l + 1..i] = s[1..i].

To append a single character c , repeatedly apply prefix-function of s
to i . On each iteration ensure that continuation of the substring
that matches until i does not fall under the prefix of s.

How do we apply this idea to check the same property for cyclic shifts?
The only difference is that now we assume that at the start l is the
maximal suffix of t that matches prefix of s. In the end l has to come to
its original value.

A B C D E F G H I J K

C. Rotate string

We should count the “prefix-function automaton” that can append a
symbol to a string t and know what will the maximum prefix-suffix match
will be; it will also forbid the transitions that allow a substring to fall
under a prefix of s lexicographically.

We will now count the “bad” strings according to the algorithm above.
Fix the original value of l . The DP will store the number of processed
symbols as well the current value of l . All ways to transfer from l in the
beginning to l in the end will correspond to bad strings.

All the rest (26n − x) strings have at least one cyclic shift that falls under
s lexicographically. However, strings with period d will be counted d
times. To mitigate this, use the standard inclusion-exclusion method for
divisors of n.

A B C D E F G H I J K

C. Rotate string

We should count the “prefix-function automaton” that can append a
symbol to a string t and know what will the maximum prefix-suffix match
will be; it will also forbid the transitions that allow a substring to fall
under a prefix of s lexicographically.

We will now count the “bad” strings according to the algorithm above.
Fix the original value of l . The DP will store the number of processed
symbols as well the current value of l . All ways to transfer from l in the
beginning to l in the end will correspond to bad strings.

All the rest (26n − x) strings have at least one cyclic shift that falls under
s lexicographically. However, strings with period d will be counted d
times. To mitigate this, use the standard inclusion-exclusion method for
divisors of n.

A B C D E F G H I J K

C. Rotate string

We should count the “prefix-function automaton” that can append a
symbol to a string t and know what will the maximum prefix-suffix match
will be; it will also forbid the transitions that allow a substring to fall
under a prefix of s lexicographically.

We will now count the “bad” strings according to the algorithm above.
Fix the original value of l . The DP will store the number of processed
symbols as well the current value of l . All ways to transfer from l in the
beginning to l in the end will correspond to bad strings.

All the rest (26n − x) strings have at least one cyclic shift that falls under
s lexicographically. However, strings with period d will be counted d
times. To mitigate this, use the standard inclusion-exclusion method for
divisors of n.

A B C D E F G H I J K

D. Triangle

Find the largest subset of {1, . . . , n} that doesn’t contain lengths of three
sides of a triangle.

Outline: construct the set greedily in O(log n) time.

A B C D E F G H I J K

D. Triangle

Find the largest subset of {1, . . . , n} that doesn’t contain lengths of three
sides of a triangle.

Outline: construct the set greedily in O(log n) time.

A B C D E F G H I J K

D. Triangle

Let a and b be the two smallest element of the set. Clearly, the third
smallest element will be at least a + b, the fourth will be at least
b + (a + b), and so on.

If we want to fit the most elements in {1, . . . , n} we should choose the
smallest possible number every time.

That results in a shifted Fibonacci sequence: 1, 2, 3, 5, 8,

Since it grows exponentially, it takes O(log n) to count the number of
elements not greater than n with straightforward computation.

A B C D E F G H I J K

D. Triangle

Let a and b be the two smallest element of the set. Clearly, the third
smallest element will be at least a + b, the fourth will be at least
b + (a + b), and so on.

If we want to fit the most elements in {1, . . . , n} we should choose the
smallest possible number every time.

That results in a shifted Fibonacci sequence: 1, 2, 3, 5, 8,

Since it grows exponentially, it takes O(log n) to count the number of
elements not greater than n with straightforward computation.

A B C D E F G H I J K

D. Triangle

Let a and b be the two smallest element of the set. Clearly, the third
smallest element will be at least a + b, the fourth will be at least
b + (a + b), and so on.

If we want to fit the most elements in {1, . . . , n} we should choose the
smallest possible number every time.

That results in a shifted Fibonacci sequence: 1, 2, 3, 5, 8,

Since it grows exponentially, it takes O(log n) to count the number of
elements not greater than n with straightforward computation.

A B C D E F G H I J K

D. Triangle

Let a and b be the two smallest element of the set. Clearly, the third
smallest element will be at least a + b, the fourth will be at least
b + (a + b), and so on.

If we want to fit the most elements in {1, . . . , n} we should choose the
smallest possible number every time.

That results in a shifted Fibonacci sequence: 1, 2, 3, 5, 8,

Since it grows exponentially, it takes O(log n) to count the number of
elements not greater than n with straightforward computation.

A B C D E F G H I J K

E. The Fastest Runner Ms. Zhang

In a connected graph with n vertices and n edges find the minimum
length of a path that visits each vertex.

Outline: try to delete each edge in the cycle and solve the problem for
the remaining tree in each case. Optimize with some data structures.

A B C D E F G H I J K

E. The Fastest Runner Ms. Zhang

In a connected graph with n vertices and n edges find the minimum
length of a path that visits each vertex.

Outline: try to delete each edge in the cycle and solve the problem for
the remaining tree in each case. Optimize with some data structures.

A B C D E F G H I J K

E. The Fastest Runner Ms. Zhang

Let’s first solve the problem if the graph is a tree.

For a particular pair of start and finish vertex v , u the answer is at least
2(n − 1)− d(v , u), where d(v , u) is the distance between v and u.

Indeed, if an edge doesn’t lie on the shortest v − u path, we have to
traverse it at least twice since we have to visit vertices on the other side,
but both v and u lie on the same side of the edge so we have to return.

If the edge lies on the v − u path, we have to traverse it at least once to
get from v to u.

This length is attained on a “partial” Euler tour of the tree, so this must
be the answer for the choice of v and u.

To optimize the length, we have to choose v and u as endpoints of a
diameter of the tree.

A B C D E F G H I J K

E. The Fastest Runner Ms. Zhang

Let’s first solve the problem if the graph is a tree.

For a particular pair of start and finish vertex v , u the answer is at least
2(n − 1)− d(v , u), where d(v , u) is the distance between v and u.

Indeed, if an edge doesn’t lie on the shortest v − u path, we have to
traverse it at least twice since we have to visit vertices on the other side,
but both v and u lie on the same side of the edge so we have to return.

If the edge lies on the v − u path, we have to traverse it at least once to
get from v to u.

This length is attained on a “partial” Euler tour of the tree, so this must
be the answer for the choice of v and u.

To optimize the length, we have to choose v and u as endpoints of a
diameter of the tree.

A B C D E F G H I J K

E. The Fastest Runner Ms. Zhang

Let’s first solve the problem if the graph is a tree.

For a particular pair of start and finish vertex v , u the answer is at least
2(n − 1)− d(v , u), where d(v , u) is the distance between v and u.

Indeed, if an edge doesn’t lie on the shortest v − u path, we have to
traverse it at least twice since we have to visit vertices on the other side,
but both v and u lie on the same side of the edge so we have to return.

If the edge lies on the v − u path, we have to traverse it at least once to
get from v to u.

This length is attained on a “partial” Euler tour of the tree, so this must
be the answer for the choice of v and u.

To optimize the length, we have to choose v and u as endpoints of a
diameter of the tree.

A B C D E F G H I J K

E. The Fastest Runner Ms. Zhang

Let’s first solve the problem if the graph is a tree.

For a particular pair of start and finish vertex v , u the answer is at least
2(n − 1)− d(v , u), where d(v , u) is the distance between v and u.

Indeed, if an edge doesn’t lie on the shortest v − u path, we have to
traverse it at least twice since we have to visit vertices on the other side,
but both v and u lie on the same side of the edge so we have to return.

If the edge lies on the v − u path, we have to traverse it at least once to
get from v to u.

This length is attained on a “partial” Euler tour of the tree, so this must
be the answer for the choice of v and u.

To optimize the length, we have to choose v and u as endpoints of a
diameter of the tree.

A B C D E F G H I J K

E. The Fastest Runner Ms. Zhang

Let’s first solve the problem if the graph is a tree.

For a particular pair of start and finish vertex v , u the answer is at least
2(n − 1)− d(v , u), where d(v , u) is the distance between v and u.

Indeed, if an edge doesn’t lie on the shortest v − u path, we have to
traverse it at least twice since we have to visit vertices on the other side,
but both v and u lie on the same side of the edge so we have to return.

If the edge lies on the v − u path, we have to traverse it at least once to
get from v to u.

This length is attained on a “partial” Euler tour of the tree, so this must
be the answer for the choice of v and u.

To optimize the length, we have to choose v and u as endpoints of a
diameter of the tree.

A B C D E F G H I J K

E. The Fastest Runner Ms. Zhang

Let’s first solve the problem if the graph is a tree.

For a particular pair of start and finish vertex v , u the answer is at least
2(n − 1)− d(v , u), where d(v , u) is the distance between v and u.

Indeed, if an edge doesn’t lie on the shortest v − u path, we have to
traverse it at least twice since we have to visit vertices on the other side,
but both v and u lie on the same side of the edge so we have to return.

If the edge lies on the v − u path, we have to traverse it at least once to
get from v to u.

This length is attained on a “partial” Euler tour of the tree, so this must
be the answer for the choice of v and u.

To optimize the length, we have to choose v and u as endpoints of a
diameter of the tree.

A B C D E F G H I J K

E. The Fastest Runner Ms. Zhang

In the actual problem we have a graph that consists of exactly one cycle
with some trees hanging from each cycle vertex.

It doesn’t make sense to travel each edge of the cycle. Actually, it does
when we start in a subtree, rise up to the cycle, make a whole loop
visiting all subtrees while we go, and then return to the same subtree we
started. All these options can be accounted for in linear time, and all the
other routes do not need to visit all cycle edges indeed. With this
observation we can obtain an easy solution: first find the cycle in the
graph, then try to erase each edge of the cycle and apply the solution to
the remaining tree. There could be ∼ n options to try though.

A B C D E F G H I J K

E. The Fastest Runner Ms. Zhang

In the actual problem we have a graph that consists of exactly one cycle
with some trees hanging from each cycle vertex.

It doesn’t make sense to travel each edge of the cycle. Actually, it does
when we start in a subtree, rise up to the cycle, make a whole loop
visiting all subtrees while we go, and then return to the same subtree we
started. All these options can be accounted for in linear time, and all the
other routes do not need to visit all cycle edges indeed. With this
observation we can obtain an easy solution: first find the cycle in the
graph, then try to erase each edge of the cycle and apply the solution to
the remaining tree. There could be ∼ n options to try though.

A B C D E F G H I J K

E. The Fastest Runner Ms. Zhang

Denote v1, . . . , vk be the vertices of the cycle in order. Consider a tree
that hangs on vi . Let it have the diameter di and the longest path down
from the root vi have length li .

If we cut the (vk , v1) edge, the diameter of the resulting tree is

max

(
k

max
i=1

di , max
16i<j6k

li + j − i + lj

)
The second part of the expression corresponds to all options to draw a
path between different trees.

Note that this expression can be computed in O(n) time. To find the
second part, we have to try all j and choose i < j that maximizes li − i .

To do that fast we store the maximal value of li − i over all processed j .

A B C D E F G H I J K

E. The Fastest Runner Ms. Zhang

Denote v1, . . . , vk be the vertices of the cycle in order. Consider a tree
that hangs on vi . Let it have the diameter di and the longest path down
from the root vi have length li .

If we cut the (vk , v1) edge, the diameter of the resulting tree is

max

(
k

max
i=1

di , max
16i<j6k

li + j − i + lj

)
The second part of the expression corresponds to all options to draw a
path between different trees.

Note that this expression can be computed in O(n) time. To find the
second part, we have to try all j and choose i < j that maximizes li − i .

To do that fast we store the maximal value of li − i over all processed j .

A B C D E F G H I J K

E. The Fastest Runner Ms. Zhang

Denote v1, . . . , vk be the vertices of the cycle in order. Consider a tree
that hangs on vi . Let it have the diameter di and the longest path down
from the root vi have length li .

If we cut the (vk , v1) edge, the diameter of the resulting tree is

max

(
k

max
i=1

di , max
16i<j6k

li + j − i + lj

)
The second part of the expression corresponds to all options to draw a
path between different trees.

Note that this expression can be computed in O(n) time. To find the
second part, we have to try all j and choose i < j that maximizes li − i .

To do that fast we store the maximal value of li − i over all processed j .

A B C D E F G H I J K

E. The Fastest Runner Ms. Zhang

Denote v1, . . . , vk be the vertices of the cycle in order. Consider a tree
that hangs on vi . Let it have the diameter di and the longest path down
from the root vi have length li .

If we cut the (vk , v1) edge, the diameter of the resulting tree is

max

(
k

max
i=1

di , max
16i<j6k

li + j − i + lj

)
The second part of the expression corresponds to all options to draw a
path between different trees.

Note that this expression can be computed in O(n) time. To find the
second part, we have to try all j and choose i < j that maximizes li − i .

To do that fast we store the maximal value of li − i over all processed j .

A B C D E F G H I J K

E. The Fastest Runner Ms. Zhang

How to account for all possible ways to erase an edge? Let us double the
array li , that is, append the same elements at the end:
(l1, . . . , lk , l1, . . . , lk).

The new array of length 2k contains all cyclic shifts of the original array.

The maximal diameter of all possible trees is now either the maximal di
for a certain i or lj + j + li − i for a certain pair 1 6 i < j 6 2k that
satisfies j − i < n.

Finding a maximal i for each j now looks like an RMQ instance. We can
solve it with any RMQ structure or an std::set+two pointers since we
know all the queries from the start, and both ends of the segments are
monotonous.

If the maximal diameter is D, then the answer is 2(n − 1)− D as before.

The total complexity is O(n log n).

A B C D E F G H I J K

E. The Fastest Runner Ms. Zhang

How to account for all possible ways to erase an edge? Let us double the
array li , that is, append the same elements at the end:
(l1, . . . , lk , l1, . . . , lk).

The new array of length 2k contains all cyclic shifts of the original array.

The maximal diameter of all possible trees is now either the maximal di
for a certain i or lj + j + li − i for a certain pair 1 6 i < j 6 2k that
satisfies j − i < n.

Finding a maximal i for each j now looks like an RMQ instance. We can
solve it with any RMQ structure or an std::set+two pointers since we
know all the queries from the start, and both ends of the segments are
monotonous.

If the maximal diameter is D, then the answer is 2(n − 1)− D as before.

The total complexity is O(n log n).

A B C D E F G H I J K

E. The Fastest Runner Ms. Zhang

How to account for all possible ways to erase an edge? Let us double the
array li , that is, append the same elements at the end:
(l1, . . . , lk , l1, . . . , lk).

The new array of length 2k contains all cyclic shifts of the original array.

The maximal diameter of all possible trees is now either the maximal di
for a certain i or lj + j + li − i for a certain pair 1 6 i < j 6 2k that
satisfies j − i < n.

Finding a maximal i for each j now looks like an RMQ instance. We can
solve it with any RMQ structure or an std::set+two pointers since we
know all the queries from the start, and both ends of the segments are
monotonous.

If the maximal diameter is D, then the answer is 2(n − 1)− D as before.

The total complexity is O(n log n).

A B C D E F G H I J K

E. The Fastest Runner Ms. Zhang

How to account for all possible ways to erase an edge? Let us double the
array li , that is, append the same elements at the end:
(l1, . . . , lk , l1, . . . , lk).

The new array of length 2k contains all cyclic shifts of the original array.

The maximal diameter of all possible trees is now either the maximal di
for a certain i or lj + j + li − i for a certain pair 1 6 i < j 6 2k that
satisfies j − i < n.

Finding a maximal i for each j now looks like an RMQ instance. We can
solve it with any RMQ structure or an std::set+two pointers since we
know all the queries from the start, and both ends of the segments are
monotonous.

If the maximal diameter is D, then the answer is 2(n − 1)− D as before.

The total complexity is O(n log n).

A B C D E F G H I J K

E. The Fastest Runner Ms. Zhang

How to account for all possible ways to erase an edge? Let us double the
array li , that is, append the same elements at the end:
(l1, . . . , lk , l1, . . . , lk).

The new array of length 2k contains all cyclic shifts of the original array.

The maximal diameter of all possible trees is now either the maximal di
for a certain i or lj + j + li − i for a certain pair 1 6 i < j 6 2k that
satisfies j − i < n.

Finding a maximal i for each j now looks like an RMQ instance. We can
solve it with any RMQ structure or an std::set+two pointers since we
know all the queries from the start, and both ends of the segments are
monotonous.

If the maximal diameter is D, then the answer is 2(n − 1)− D as before.

The total complexity is O(n log n).

A B C D E F G H I J K

E. The Fastest Runner Ms. Zhang

How to account for all possible ways to erase an edge? Let us double the
array li , that is, append the same elements at the end:
(l1, . . . , lk , l1, . . . , lk).

The new array of length 2k contains all cyclic shifts of the original array.

The maximal diameter of all possible trees is now either the maximal di
for a certain i or lj + j + li − i for a certain pair 1 6 i < j 6 2k that
satisfies j − i < n.

Finding a maximal i for each j now looks like an RMQ instance. We can
solve it with any RMQ structure or an std::set+two pointers since we
know all the queries from the start, and both ends of the segments are
monotonous.

If the maximal diameter is D, then the answer is 2(n − 1)− D as before.

The total complexity is O(n log n).

A B C D E F G H I J K

F. Harmonic Value

Harmonic value of a permutation (p1, . . . , pn) is the sum

f (p) =
∑n−1

i=1 GCD(pi , pi+1). Find the k-th smallest possible value of
harmonic sum of a permutation of n numbers and present a permutation
with such value. 2k 6 n.

Outline: for 2k 6 n a really simple construction works. Without this
condition — hard.

A B C D E F G H I J K

F. Harmonic Value

Harmonic value of a permutation (p1, . . . , pn) is the sum

f (p) =
∑n−1

i=1 GCD(pi , pi+1). Find the k-th smallest possible value of
harmonic sum of a permutation of n numbers and present a permutation
with such value. 2k 6 n.

Outline: for 2k 6 n a really simple construction works. Without this
condition — hard.

A B C D E F G H I J K

F. Harmonic Value

Clearly, f (p) > n− 1. Let us present a construction with a single value of
GCD different from 1 being k (only for 2k 6 n).

If k is even: 1, 2, . . . , k, 2k, 2k − 1, . . . , k + 1, 2k + 1, 2k + 2, . . . , n.

It’s easy to check that each of the adjacent pairs other than (k, 2k)
either differs by 1 or is a pair (k + 1, 2k + 1) which has GCD of 1.

If k is odd: 1, 2, . . . , k, 2k, k + 1, . . . , 2k − 1, 2k + 1, 2k + 2, . . . , n.

Again, adjacent pairs either differ by 1, or are (k, 2k) or (2k − 1, 2k + 1).

Evidently enough from above, the k-th smallest value of f is n − k + 2.

A B C D E F G H I J K

F. Harmonic Value

Clearly, f (p) > n− 1. Let us present a construction with a single value of
GCD different from 1 being k (only for 2k 6 n).

If k is even: 1, 2, . . . , k, 2k , 2k − 1, . . . , k + 1, 2k + 1, 2k + 2, . . . , n.

It’s easy to check that each of the adjacent pairs other than (k, 2k)
either differs by 1 or is a pair (k + 1, 2k + 1) which has GCD of 1.

If k is odd: 1, 2, . . . , k, 2k, k + 1, . . . , 2k − 1, 2k + 1, 2k + 2, . . . , n.

Again, adjacent pairs either differ by 1, or are (k, 2k) or (2k − 1, 2k + 1).

Evidently enough from above, the k-th smallest value of f is n − k + 2.

A B C D E F G H I J K

F. Harmonic Value

Clearly, f (p) > n− 1. Let us present a construction with a single value of
GCD different from 1 being k (only for 2k 6 n).

If k is even: 1, 2, . . . , k, 2k , 2k − 1, . . . , k + 1, 2k + 1, 2k + 2, . . . , n.

It’s easy to check that each of the adjacent pairs other than (k, 2k)
either differs by 1 or is a pair (k + 1, 2k + 1) which has GCD of 1.

If k is odd: 1, 2, . . . , k, 2k, k + 1, . . . , 2k − 1, 2k + 1, 2k + 2, . . . , n.

Again, adjacent pairs either differ by 1, or are (k, 2k) or (2k − 1, 2k + 1).

Evidently enough from above, the k-th smallest value of f is n − k + 2.

A B C D E F G H I J K

F. Harmonic Value

Clearly, f (p) > n− 1. Let us present a construction with a single value of
GCD different from 1 being k (only for 2k 6 n).

If k is even: 1, 2, . . . , k, 2k , 2k − 1, . . . , k + 1, 2k + 1, 2k + 2, . . . , n.

It’s easy to check that each of the adjacent pairs other than (k, 2k)
either differs by 1 or is a pair (k + 1, 2k + 1) which has GCD of 1.

If k is odd: 1, 2, . . . , k , 2k , k + 1, . . . , 2k − 1, 2k + 1, 2k + 2, . . . , n.

Again, adjacent pairs either differ by 1, or are (k, 2k) or (2k − 1, 2k + 1).

Evidently enough from above, the k-th smallest value of f is n − k + 2.

A B C D E F G H I J K

F. Harmonic Value

Clearly, f (p) > n− 1. Let us present a construction with a single value of
GCD different from 1 being k (only for 2k 6 n).

If k is even: 1, 2, . . . , k, 2k , 2k − 1, . . . , k + 1, 2k + 1, 2k + 2, . . . , n.

It’s easy to check that each of the adjacent pairs other than (k, 2k)
either differs by 1 or is a pair (k + 1, 2k + 1) which has GCD of 1.

If k is odd: 1, 2, . . . , k , 2k , k + 1, . . . , 2k − 1, 2k + 1, 2k + 2, . . . , n.

Again, adjacent pairs either differ by 1, or are (k , 2k) or (2k − 1, 2k + 1).

Evidently enough from above, the k-th smallest value of f is n − k + 2.

A B C D E F G H I J K

F. Harmonic Value

Clearly, f (p) > n− 1. Let us present a construction with a single value of
GCD different from 1 being k (only for 2k 6 n).

If k is even: 1, 2, . . . , k, 2k , 2k − 1, . . . , k + 1, 2k + 1, 2k + 2, . . . , n.

It’s easy to check that each of the adjacent pairs other than (k, 2k)
either differs by 1 or is a pair (k + 1, 2k + 1) which has GCD of 1.

If k is odd: 1, 2, . . . , k , 2k , k + 1, . . . , 2k − 1, 2k + 1, 2k + 2, . . . , n.

Again, adjacent pairs either differ by 1, or are (k , 2k) or (2k − 1, 2k + 1).

Evidently enough from above, the k-th smallest value of f is n − k + 2.

A B C D E F G H I J K

G. Instability

In a given graph count the number of (induced) subgraphs that contain
either a triangle or an anti-triangle.

Outline: all subsets with six or more vertices are always good, all the
others can be brute-forced.

A B C D E F G H I J K

G. Instability

In a given graph count the number of (induced) subgraphs that contain
either a triangle or an anti-triangle.

Outline: all subsets with six or more vertices are always good, all the
others can be brute-forced.

A B C D E F G H I J K

G. Instability

Theorem

Every graph of n > 6 contains either or a triangle or an anti-triangle.

Proof.

A classic exercise in graph theory.

In general:

Ramsey’s theorem

For each r , s > 0 there is such n that every graph on at least n vertices
contains either an r -clique or an s-anticlique.

A B C D E F G H I J K

G. Instability

Theorem

Every graph of n > 6 contains either or a triangle or an anti-triangle.

Proof.

A classic exercise in graph theory.

In general:

Ramsey’s theorem

For each r , s > 0 there is such n that every graph on at least n vertices
contains either an r -clique or an s-anticlique.

A B C D E F G H I J K

G. Instability

Theorem

Every graph of n > 6 contains either or a triangle or an anti-triangle.

Proof.

A classic exercise in graph theory.

In general:

Ramsey’s theorem

For each r , s > 0 there is such n that every graph on at least n vertices
contains either an r -clique or an s-anticlique.

A B C D E F G H I J K

G. Instability

The theorem above implies that all the subsets of size at least 6 should
be included in the answer. It suffices to check all subsets of size at most
5 in O(n5) time.

While the complexity may seem large, remember that the constant is
effectively 1/5!. Also various tricks may be employed to further optimize
the solution.

A B C D E F G H I J K

G. Instability

The theorem above implies that all the subsets of size at least 6 should
be included in the answer. It suffices to check all subsets of size at most
5 in O(n5) time.

While the complexity may seem large, remember that the constant is
effectively 1/5!. Also various tricks may be employed to further optimize
the solution.

A B C D E F G H I J K

H. Sequence I

For two sequences a and b and a number p, count the number of
subsequences of a with distance p between successive indices that are
equal to b.

Outline: simple reduction to substring search.

A B C D E F G H I J K

H. Sequence I

For two sequences a and b and a number p, count the number of
subsequences of a with distance p between successive indices that are
equal to b.

Outline: simple reduction to substring search.

A B C D E F G H I J K

H. Sequence I

For 1 6 i 6 p consider a sequence ci = (ai , ai+p, . . .). We can count the
number of substrings of ci that are equal to b in O(|b|+ |ci |) time with
any substring search algorithm, e.g., KMP.

Doing this for all i results in a O(|a|+ p|b|) time solution.

Don’t do anything for particular i if |ci | < |b|: O(|a|+ |b|) time.

A B C D E F G H I J K

H. Sequence I

For 1 6 i 6 p consider a sequence ci = (ai , ai+p, . . .). We can count the
number of substrings of ci that are equal to b in O(|b|+ |ci |) time with
any substring search algorithm, e.g., KMP.

Doing this for all i results in a O(|a|+ p|b|) time solution.

Don’t do anything for particular i if |ci | < |b|: O(|a|+ |b|) time.

A B C D E F G H I J K

H. Sequence I

For 1 6 i 6 p consider a sequence ci = (ai , ai+p, . . .). We can count the
number of substrings of ci that are equal to b in O(|b|+ |ci |) time with
any substring search algorithm, e.g., KMP.

Doing this for all i results in a O(|a|+ p|b|) time solution.

Don’t do anything for particular i if |ci | < |b|: O(|a|+ |b|) time.

A B C D E F G H I J K

I. Sequence II

We are given an array of integers a1, . . . , an. For a segment [l ; r] call a
position i interesting if it’s the first occurence of the number ai in the
segment. Process several queries “find median of all interesting positions
of segment [li ; ri]”. Queries must be answered online.

Outline: resort to cartesian trees for queries, make them persistent to
make the solution online.

A B C D E F G H I J K

I. Sequence II

We are given an array of integers a1, . . . , an. For a segment [l ; r] call a
position i interesting if it’s the first occurence of the number ai in the
segment. Process several queries “find median of all interesting positions
of segment [li ; ri]”. Queries must be answered online.

Outline: resort to cartesian trees for queries, make them persistent to
make the solution online.

A B C D E F G H I J K

I. Sequence II

It usually helps to come up with an offline solution first. Let’s process all
queries by decreasing of li . We will store the set of all interesting
positions in the segment [l ; n].

When l is decreased, a new interesting position l is created, possibly
overwriting a previous interesting position if al is encountered later in the
array.

Let us store all interesting positions in a cartesian tree. To answer a
query [l ; r], perform a cut of the tree in position r . We will then know
the number of interesting positions and will be able to address a specific
index.

Also note that we can avoid actually modifying the tree just by
performing a “binary-search” descent and counting the number of
elements 6 r .

This solution is now O(log n) per query and O(n log n) preprocessing.

A B C D E F G H I J K

I. Sequence II

It usually helps to come up with an offline solution first. Let’s process all
queries by decreasing of li . We will store the set of all interesting
positions in the segment [l ; n].

When l is decreased, a new interesting position l is created, possibly
overwriting a previous interesting position if al is encountered later in the
array.

Let us store all interesting positions in a cartesian tree. To answer a
query [l ; r], perform a cut of the tree in position r . We will then know
the number of interesting positions and will be able to address a specific
index.

Also note that we can avoid actually modifying the tree just by
performing a “binary-search” descent and counting the number of
elements 6 r .

This solution is now O(log n) per query and O(n log n) preprocessing.

A B C D E F G H I J K

I. Sequence II

It usually helps to come up with an offline solution first. Let’s process all
queries by decreasing of li . We will store the set of all interesting
positions in the segment [l ; n].

When l is decreased, a new interesting position l is created, possibly
overwriting a previous interesting position if al is encountered later in the
array.

Let us store all interesting positions in a cartesian tree. To answer a
query [l ; r], perform a cut of the tree in position r . We will then know
the number of interesting positions and will be able to address a specific
index.

Also note that we can avoid actually modifying the tree just by
performing a “binary-search” descent and counting the number of
elements 6 r .

This solution is now O(log n) per query and O(n log n) preprocessing.

A B C D E F G H I J K

I. Sequence II

It usually helps to come up with an offline solution first. Let’s process all
queries by decreasing of li . We will store the set of all interesting
positions in the segment [l ; n].

When l is decreased, a new interesting position l is created, possibly
overwriting a previous interesting position if al is encountered later in the
array.

Let us store all interesting positions in a cartesian tree. To answer a
query [l ; r], perform a cut of the tree in position r . We will then know
the number of interesting positions and will be able to address a specific
index.

Also note that we can avoid actually modifying the tree just by
performing a “binary-search” descent and counting the number of
elements 6 r .

This solution is now O(log n) per query and O(n log n) preprocessing.

A B C D E F G H I J K

I. Sequence II

It usually helps to come up with an offline solution first. Let’s process all
queries by decreasing of li . We will store the set of all interesting
positions in the segment [l ; n].

When l is decreased, a new interesting position l is created, possibly
overwriting a previous interesting position if al is encountered later in the
array.

Let us store all interesting positions in a cartesian tree. To answer a
query [l ; r], perform a cut of the tree in position r . We will then know
the number of interesting positions and will be able to address a specific
index.

Also note that we can avoid actually modifying the tree just by
performing a “binary-search” descent and counting the number of
elements 6 r .

This solution is now O(log n) per query and O(n log n) preprocessing.

A B C D E F G H I J K

I. Sequence II

To answer queries online, make the tree persistent; this will allow us to
access any “version” of the tree and answer any query after the
preprocessing.

This will not affect the time complexity, but will require O(n log n)
memory.

A B C D E F G H I J K

I. Sequence II

To answer queries online, make the tree persistent; this will allow us to
access any “version” of the tree and answer any query after the
preprocessing.

This will not affect the time complexity, but will require O(n log n)
memory.

A B C D E F G H I J K

J. Ugly Problem

Represent n 6 101000 as a sum of at most 50 palindrome numbers.

Outline: greedily subtracting largest possible palindrome roughly halves
the length of the number.

A B C D E F G H I J K

J. Ugly Problem

Represent n 6 101000 as a sum of at most 50 palindrome numbers.

Outline: greedily subtracting largest possible palindrome roughly halves
the length of the number.

A B C D E F G H I J K

J. Ugly Problem

We want to subtract the largest palindrome not exceeding n.

Let us suppose that the length of n is l . We will build m as follows: take
l ′ = dl/2e first digits of n and add the rest so that m has l digits and is a
palindrome.

If m > n, subtract 1 from the number formed by the l ′ largest digits of m
and mirror the number again; the new number is less than n. Now we
can subtract m from n.

The special case is when n = 10k , then we need to take m = 10k − 1.

If we don’t need to alter m after making the first part equal, then
n −m < 10l′ . In the other case, n −m < 2 · 10l′ . In any case, then
length of n is roughly halved after every operation, resulting in O(log n)
summands.

A B C D E F G H I J K

J. Ugly Problem

We want to subtract the largest palindrome not exceeding n.

Let us suppose that the length of n is l . We will build m as follows: take
l ′ = dl/2e first digits of n and add the rest so that m has l digits and is a
palindrome.

If m > n, subtract 1 from the number formed by the l ′ largest digits of m
and mirror the number again; the new number is less than n. Now we
can subtract m from n.

The special case is when n = 10k , then we need to take m = 10k − 1.

If we don’t need to alter m after making the first part equal, then
n −m < 10l′ . In the other case, n −m < 2 · 10l′ . In any case, then
length of n is roughly halved after every operation, resulting in O(log n)
summands.

A B C D E F G H I J K

J. Ugly Problem

We want to subtract the largest palindrome not exceeding n.

Let us suppose that the length of n is l . We will build m as follows: take
l ′ = dl/2e first digits of n and add the rest so that m has l digits and is a
palindrome.

If m > n, subtract 1 from the number formed by the l ′ largest digits of m
and mirror the number again; the new number is less than n. Now we
can subtract m from n.

The special case is when n = 10k , then we need to take m = 10k − 1.

If we don’t need to alter m after making the first part equal, then
n −m < 10l′ . In the other case, n −m < 2 · 10l′ . In any case, then
length of n is roughly halved after every operation, resulting in O(log n)
summands.

A B C D E F G H I J K

J. Ugly Problem

We want to subtract the largest palindrome not exceeding n.

Let us suppose that the length of n is l . We will build m as follows: take
l ′ = dl/2e first digits of n and add the rest so that m has l digits and is a
palindrome.

If m > n, subtract 1 from the number formed by the l ′ largest digits of m
and mirror the number again; the new number is less than n. Now we
can subtract m from n.

The special case is when n = 10k , then we need to take m = 10k − 1.

If we don’t need to alter m after making the first part equal, then
n −m < 10l′ . In the other case, n −m < 2 · 10l′ . In any case, then
length of n is roughly halved after every operation, resulting in O(log n)
summands.

A B C D E F G H I J K

J. Ugly Problem

We want to subtract the largest palindrome not exceeding n.

Let us suppose that the length of n is l . We will build m as follows: take
l ′ = dl/2e first digits of n and add the rest so that m has l digits and is a
palindrome.

If m > n, subtract 1 from the number formed by the l ′ largest digits of m
and mirror the number again; the new number is less than n. Now we
can subtract m from n.

The special case is when n = 10k , then we need to take m = 10k − 1.

If we don’t need to alter m after making the first part equal, then
n −m < 10l′ . In the other case, n −m < 2 · 10l′ . In any case, then
length of n is roughly halved after every operation, resulting in O(log n)
summands.

A B C D E F G H I J K

K. Binary Indexed Tree

Count the total number of elements the BIT (Fenwick tree, etc.)
performs for operations “change array elements at positions l and r”
pairs (l , r) such that 0 6 l < r 6 n.

Outline: look at binary representation of l and r , express the answer and
find it combinatorially/with bitwise DP.

A B C D E F G H I J K

K. Binary Indexed Tree

Count the total number of elements the BIT (Fenwick tree, etc.)
performs for operations “change array elements at positions l and r”
pairs (l , r) such that 0 6 l < r 6 n.

Outline: look at binary representation of l and r , express the answer and
find it combinatorially/with bitwise DP.

A B C D E F G H I J K

K. Binary Indexed Tree

The operation i = i -= i & (-i) effectively wipes the smallest bit of i
set to 1.

Let us call a number i a prefix of number j if i can be obtained from j
using one or several operations described above. For a pair of numbers l
and r the number of changed elements is the number of prefixes of l that
are not prefixes of r , plus the symmetrical value.

A different way to express the answer: for each number x from 1 to n
denote f (x) the number of pairs (a, b) with 0 6 a, b 6 n such that x is a
prefix of a but not a prefix of b. Observe that

∑n
x=1 f (x) differs from the

actual answer only in the order of summation.

A B C D E F G H I J K

K. Binary Indexed Tree

The operation i = i -= i & (-i) effectively wipes the smallest bit of i
set to 1.

Let us call a number i a prefix of number j if i can be obtained from j
using one or several operations described above. For a pair of numbers l
and r the number of changed elements is the number of prefixes of l that
are not prefixes of r , plus the symmetrical value.

A different way to express the answer: for each number x from 1 to n
denote f (x) the number of pairs (a, b) with 0 6 a, b 6 n such that x is a
prefix of a but not a prefix of b. Observe that

∑n
x=1 f (x) differs from the

actual answer only in the order of summation.

A B C D E F G H I J K

K. Binary Indexed Tree

The operation i = i -= i & (-i) effectively wipes the smallest bit of i
set to 1.

Let us call a number i a prefix of number j if i can be obtained from j
using one or several operations described above. For a pair of numbers l
and r the number of changed elements is the number of prefixes of l that
are not prefixes of r , plus the symmetrical value.

A different way to express the answer: for each number x from 1 to n
denote f (x) the number of pairs (a, b) with 0 6 a, b 6 n such that x is a
prefix of a but not a prefix of b. Observe that

∑n
x=1 f (x) differs from the

actual answer only in the order of summation.

A B C D E F G H I J K

K. Binary Indexed Tree

Further, let g(x) denote the number of y ’s not exceeding n such that x is
a prefix of y , then f (x) = g(x)(n + 1− g(x)).

If k(x) is the number of trailing zeros in binary representation of x , then
g(x) = n − x + 1 if x is prefix of n, and 2k(x) otherwise.

For example, let n = 13 = 11012. Then
g(4) = g(1002) = 4 = |{1002, 1012, 1102, 1112}|, but
g(8) = g(10002) = 6 = |{10002, 10012, 10102, 10112, 11002, 11012}|.

The number of x ’s with k(x) = t is b(n + 2t)/2t+1c, since each of them
is (2z + 1)2t for a non-negative integer z .

Each of these numbers contributes 2t(n + 1− 2t) to the answer unless it
is a prefix of n. All these cases can be handled and summed up in
O(log n).

Another way to deal with bit manipulations and counting is to implement
some king of bitwise DP to count the same or a similar quanitities.

A B C D E F G H I J K

K. Binary Indexed Tree

Further, let g(x) denote the number of y ’s not exceeding n such that x is
a prefix of y , then f (x) = g(x)(n + 1− g(x)).

If k(x) is the number of trailing zeros in binary representation of x , then
g(x) = n − x + 1 if x is prefix of n, and 2k(x) otherwise.

For example, let n = 13 = 11012. Then
g(4) = g(1002) = 4 = |{1002, 1012, 1102, 1112}|, but
g(8) = g(10002) = 6 = |{10002, 10012, 10102, 10112, 11002, 11012}|.

The number of x ’s with k(x) = t is b(n + 2t)/2t+1c, since each of them
is (2z + 1)2t for a non-negative integer z .

Each of these numbers contributes 2t(n + 1− 2t) to the answer unless it
is a prefix of n. All these cases can be handled and summed up in
O(log n).

Another way to deal with bit manipulations and counting is to implement
some king of bitwise DP to count the same or a similar quanitities.

A B C D E F G H I J K

K. Binary Indexed Tree

Further, let g(x) denote the number of y ’s not exceeding n such that x is
a prefix of y , then f (x) = g(x)(n + 1− g(x)).

If k(x) is the number of trailing zeros in binary representation of x , then
g(x) = n − x + 1 if x is prefix of n, and 2k(x) otherwise.

For example, let n = 13 = 11012. Then
g(4) = g(1002) = 4 = |{1002, 1012, 1102, 1112}|, but
g(8) = g(10002) = 6 = |{10002, 10012, 10102, 10112, 11002, 11012}|.

The number of x ’s with k(x) = t is b(n + 2t)/2t+1c, since each of them
is (2z + 1)2t for a non-negative integer z .

Each of these numbers contributes 2t(n + 1− 2t) to the answer unless it
is a prefix of n. All these cases can be handled and summed up in
O(log n).

Another way to deal with bit manipulations and counting is to implement
some king of bitwise DP to count the same or a similar quanitities.

A B C D E F G H I J K

K. Binary Indexed Tree

Further, let g(x) denote the number of y ’s not exceeding n such that x is
a prefix of y , then f (x) = g(x)(n + 1− g(x)).

If k(x) is the number of trailing zeros in binary representation of x , then
g(x) = n − x + 1 if x is prefix of n, and 2k(x) otherwise.

For example, let n = 13 = 11012. Then
g(4) = g(1002) = 4 = |{1002, 1012, 1102, 1112}|, but
g(8) = g(10002) = 6 = |{10002, 10012, 10102, 10112, 11002, 11012}|.

The number of x ’s with k(x) = t is b(n + 2t)/2t+1c, since each of them
is (2z + 1)2t for a non-negative integer z .

Each of these numbers contributes 2t(n + 1− 2t) to the answer unless it
is a prefix of n. All these cases can be handled and summed up in
O(log n).

Another way to deal with bit manipulations and counting is to implement
some king of bitwise DP to count the same or a similar quanitities.

A B C D E F G H I J K

K. Binary Indexed Tree

Further, let g(x) denote the number of y ’s not exceeding n such that x is
a prefix of y , then f (x) = g(x)(n + 1− g(x)).

If k(x) is the number of trailing zeros in binary representation of x , then
g(x) = n − x + 1 if x is prefix of n, and 2k(x) otherwise.

For example, let n = 13 = 11012. Then
g(4) = g(1002) = 4 = |{1002, 1012, 1102, 1112}|, but
g(8) = g(10002) = 6 = |{10002, 10012, 10102, 10112, 11002, 11012}|.

The number of x ’s with k(x) = t is b(n + 2t)/2t+1c, since each of them
is (2z + 1)2t for a non-negative integer z .

Each of these numbers contributes 2t(n + 1− 2t) to the answer unless it
is a prefix of n. All these cases can be handled and summed up in
O(log n).

Another way to deal with bit manipulations and counting is to implement
some king of bitwise DP to count the same or a similar quanitities.

A B C D E F G H I J K

K. Binary Indexed Tree

Further, let g(x) denote the number of y ’s not exceeding n such that x is
a prefix of y , then f (x) = g(x)(n + 1− g(x)).

If k(x) is the number of trailing zeros in binary representation of x , then
g(x) = n − x + 1 if x is prefix of n, and 2k(x) otherwise.

For example, let n = 13 = 11012. Then
g(4) = g(1002) = 4 = |{1002, 1012, 1102, 1112}|, but
g(8) = g(10002) = 6 = |{10002, 10012, 10102, 10112, 11002, 11012}|.

The number of x ’s with k(x) = t is b(n + 2t)/2t+1c, since each of them
is (2z + 1)2t for a non-negative integer z .

Each of these numbers contributes 2t(n + 1− 2t) to the answer unless it
is a prefix of n. All these cases can be handled and summed up in
O(log n).

Another way to deal with bit manipulations and counting is to implement
some king of bitwise DP to count the same or a similar quanitities.

