
A B C D E F G H I J K

Warsaw U Contest Editorial

November 14th, 2016

by Mikhail Tikhomirov (MIPT)

Moscow ACM ICPC Workshop, MIPT, 2016



A B C D E F G H I J K

A. Arkanoid

There are k 1× 1 square obstacles on a rectangular n ×m field. A ball
starts moving diagonally to axes from a certain point. The ball reflects
from the walls. When the ball collides with an obstacle, the latter is
destroyed and the ball reflects naturally. Determine the time when the
last obstacle is destroyed.

Outline: modelling with effective finding of the next obstacle to break.



A B C D E F G H I J K

A. Arkanoid

There are k 1× 1 square obstacles on a rectangular n ×m field. A ball
starts moving diagonally to axes from a certain point. The ball reflects
from the walls. When the ball collides with an obstacle, the latter is
destroyed and the ball reflects naturally. Determine the time when the
last obstacle is destroyed.

Outline: modelling with effective finding of the next obstacle to break.



A B C D E F G H I J K

A. Arkanoid

A naive simulating approach can work in O(nmk) time in the worst case.

The hardest part is to find for a certain ball position and a set of
obstacles (some of the initial ones could get destroyed) which obstacle is
the next to be destroyed.



A B C D E F G H I J K

A. Arkanoid

A naive simulating approach can work in O(nmk) time in the worst case.

The hardest part is to find for a certain ball position and a set of
obstacles (some of the initial ones could get destroyed) which obstacle is
the next to be destroyed.



A B C D E F G H I J K

A. Arkanoid

Let us number all possible pairs of position and direction of the ball
starting from a certain point.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

If one has the number k of the situation (position + direction), one can
transform it to actual position and velocity coordinates. Indeed, consider
time moment k. If the ball started from (0.5, 0) moving to the upper
right, it must have made b(0.5k + 0.5)/mc bounces from vertical sides
and b0.5k/nc from horizontal sides. This information is enough to find
the coordinates and velocity.



A B C D E F G H I J K

A. Arkanoid

Let us number all possible pairs of position and direction of the ball
starting from a certain point.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

If one has the number k of the situation (position + direction), one can
transform it to actual position and velocity coordinates. Indeed, consider
time moment k. If the ball started from (0.5, 0) moving to the upper
right, it must have made b(0.5k + 0.5)/mc bounces from vertical sides
and b0.5k/nc from horizontal sides. This information is enough to find
the coordinates and velocity.



A B C D E F G H I J K

A. Arkanoid

To answer a converse question, that is, determine the number k from
coordinates and velocity, first notice that the pair (x-coordinate,
x-velocity) periodically repeats with period 4m; the same holds for y and
period 4n. Thus, one has to solve a system of modular equations of sort:

k ≡ kx (mod 4m), k ≡ ky (mod 4n),

where numbers kx and ky correspond to the position and direction.

One way of solving a system of similar form is to use the Chinese
remainder theorem.



A B C D E F G H I J K

A. Arkanoid

To answer a converse question, that is, determine the number k from
coordinates and velocity, first notice that the pair (x-coordinate,
x-velocity) periodically repeats with period 4m; the same holds for y and
period 4n. Thus, one has to solve a system of modular equations of sort:

k ≡ kx (mod 4m), k ≡ ky (mod 4n),

where numbers kx and ky correspond to the position and direction.

One way of solving a system of similar form is to use the Chinese
remainder theorem.



A B C D E F G H I J K

A. Arkanoid

Now consider a particular obstacle. There are 8 different pairs (position,
velocity) that correspond to hitting the obstacle from different angles.
Each of these pairs has a unique number (if we use the situations
indexing described above). We will store all these numbers in a data
structure that supports finding lower/upper bound.

Suppose that we are currently in a situation with index k. The current
direction can correspond to increasing or decreasing k over time. Now,
finding the next collision can be done with certain lower/upper bound
query to the data structure.

Having found the next collision, we should erase all entries that
correspond to the recently destroyed obstacle. We proceed until all
obstacles are destroyed.

The solution has O(k log k) complexity.



A B C D E F G H I J K

A. Arkanoid

Now consider a particular obstacle. There are 8 different pairs (position,
velocity) that correspond to hitting the obstacle from different angles.
Each of these pairs has a unique number (if we use the situations
indexing described above). We will store all these numbers in a data
structure that supports finding lower/upper bound.

Suppose that we are currently in a situation with index k. The current
direction can correspond to increasing or decreasing k over time. Now,
finding the next collision can be done with certain lower/upper bound
query to the data structure.

Having found the next collision, we should erase all entries that
correspond to the recently destroyed obstacle. We proceed until all
obstacles are destroyed.

The solution has O(k log k) complexity.



A B C D E F G H I J K

A. Arkanoid

Now consider a particular obstacle. There are 8 different pairs (position,
velocity) that correspond to hitting the obstacle from different angles.
Each of these pairs has a unique number (if we use the situations
indexing described above). We will store all these numbers in a data
structure that supports finding lower/upper bound.

Suppose that we are currently in a situation with index k. The current
direction can correspond to increasing or decreasing k over time. Now,
finding the next collision can be done with certain lower/upper bound
query to the data structure.

Having found the next collision, we should erase all entries that
correspond to the recently destroyed obstacle. We proceed until all
obstacles are destroyed.

The solution has O(k log k) complexity.



A B C D E F G H I J K

A. Arkanoid

Now consider a particular obstacle. There are 8 different pairs (position,
velocity) that correspond to hitting the obstacle from different angles.
Each of these pairs has a unique number (if we use the situations
indexing described above). We will store all these numbers in a data
structure that supports finding lower/upper bound.

Suppose that we are currently in a situation with index k. The current
direction can correspond to increasing or decreasing k over time. Now,
finding the next collision can be done with certain lower/upper bound
query to the data structure.

Having found the next collision, we should erase all entries that
correspond to the recently destroyed obstacle. We proceed until all
obstacles are destroyed.

The solution has O(k log k) complexity.



A B C D E F G H I J K

B. Vari-directional Streets

A vertex v of a directed graph is good if for every vertex u either u is
reachable from v or v is reachable from u. Find the set of good vertices
of a given digraph.

Outline: condense the strongly connected components of the digraph,
obtain a simple criterion for a DAG using topsort properties.



A B C D E F G H I J K

B. Vari-directional Streets

A vertex v of a directed graph is good if for every vertex u either u is
reachable from v or v is reachable from u. Find the set of good vertices
of a given digraph.

Outline: condense the strongly connected components of the digraph,
obtain a simple criterion for a DAG using topsort properties.



A B C D E F G H I J K

B. Vari-directional Streets
DAG case

First, suppose that a given digraph is a DAG (directed acyclic graph).
Can we determine the set of good vertices in this case?

Choose a topological ordering of the DAG arbitrarily. For simplicity we
will identify vertices of the DAG with their indices in topsort.

A vertex v is good iff all vertices u > v are reachable from v , and v is
reachable from any u < v . We will check the first condition for all
vertices; the second one can be checked in a completely symmetrical way.



A B C D E F G H I J K

B. Vari-directional Streets
DAG case

First, suppose that a given digraph is a DAG (directed acyclic graph).
Can we determine the set of good vertices in this case?

Choose a topological ordering of the DAG arbitrarily. For simplicity we
will identify vertices of the DAG with their indices in topsort.

A vertex v is good iff all vertices u > v are reachable from v , and v is
reachable from any u < v . We will check the first condition for all
vertices; the second one can be checked in a completely symmetrical way.



A B C D E F G H I J K

B. Vari-directional Streets
DAG case

First, suppose that a given digraph is a DAG (directed acyclic graph).
Can we determine the set of good vertices in this case?

Choose a topological ordering of the DAG arbitrarily. For simplicity we
will identify vertices of the DAG with their indices in topsort.

A vertex v is good iff all vertices u > v are reachable from v , and v is
reachable from any u < v . We will check the first condition for all
vertices; the second one can be checked in a completely symmetrical way.



A B C D E F G H I J K

B. Vari-directional Streets
DAG case

For a vertex u > v let deg+(v |u) denote the number of edges (w , u) with
w > v . Let us call a vertex u a v -source if deg+(v |u) = 0 (that is, u is a
source in the part of the graph to the right of v including v).

Note that existence of a vertex u > v that is unreachable from v is
equivalent to existence of a v -source different from v .

Let us iterate over all possible v from left to right, and maintain
deg+(v |u) for all u > v along with the number of vertices with
deg+(v |u) = 0.

To move from v to v + 1 simply decrease in-degree of all vertices directly
reachable from v .

To check the symmetrical condition consider the reversed graph. A
vertex v is good if doesn’t have a v -source in both cases.



A B C D E F G H I J K

B. Vari-directional Streets
DAG case

For a vertex u > v let deg+(v |u) denote the number of edges (w , u) with
w > v . Let us call a vertex u a v -source if deg+(v |u) = 0 (that is, u is a
source in the part of the graph to the right of v including v).

Note that existence of a vertex u > v that is unreachable from v is
equivalent to existence of a v -source different from v .

Let us iterate over all possible v from left to right, and maintain
deg+(v |u) for all u > v along with the number of vertices with
deg+(v |u) = 0.

To move from v to v + 1 simply decrease in-degree of all vertices directly
reachable from v .

To check the symmetrical condition consider the reversed graph. A
vertex v is good if doesn’t have a v -source in both cases.



A B C D E F G H I J K

B. Vari-directional Streets
DAG case

For a vertex u > v let deg+(v |u) denote the number of edges (w , u) with
w > v . Let us call a vertex u a v -source if deg+(v |u) = 0 (that is, u is a
source in the part of the graph to the right of v including v).

Note that existence of a vertex u > v that is unreachable from v is
equivalent to existence of a v -source different from v .

Let us iterate over all possible v from left to right, and maintain
deg+(v |u) for all u > v along with the number of vertices with
deg+(v |u) = 0.

To move from v to v + 1 simply decrease in-degree of all vertices directly
reachable from v .

To check the symmetrical condition consider the reversed graph. A
vertex v is good if doesn’t have a v -source in both cases.



A B C D E F G H I J K

B. Vari-directional Streets
DAG case

For a vertex u > v let deg+(v |u) denote the number of edges (w , u) with
w > v . Let us call a vertex u a v -source if deg+(v |u) = 0 (that is, u is a
source in the part of the graph to the right of v including v).

Note that existence of a vertex u > v that is unreachable from v is
equivalent to existence of a v -source different from v .

Let us iterate over all possible v from left to right, and maintain
deg+(v |u) for all u > v along with the number of vertices with
deg+(v |u) = 0.

To move from v to v + 1 simply decrease in-degree of all vertices directly
reachable from v .

To check the symmetrical condition consider the reversed graph. A
vertex v is good if doesn’t have a v -source in both cases.



A B C D E F G H I J K

B. Vari-directional Streets
DAG case

For a vertex u > v let deg+(v |u) denote the number of edges (w , u) with
w > v . Let us call a vertex u a v -source if deg+(v |u) = 0 (that is, u is a
source in the part of the graph to the right of v including v).

Note that existence of a vertex u > v that is unreachable from v is
equivalent to existence of a v -source different from v .

Let us iterate over all possible v from left to right, and maintain
deg+(v |u) for all u > v along with the number of vertices with
deg+(v |u) = 0.

To move from v to v + 1 simply decrease in-degree of all vertices directly
reachable from v .

To check the symmetrical condition consider the reversed graph. A
vertex v is good if doesn’t have a v -source in both cases.



A B C D E F G H I J K

B. Vari-directional Streets

To obtain the solution for a general digraph note that all vertices in the
same SCC (strongly connected components) either are all good or all bad.

Build all SCC’s and the condensation of the digraph (compressed graph
with vertices in SCC’s and edges between different SCC’s). Apply the
DAG solution to the condensation, output all vertices in good SCC’s.

Both condensation construction and DAG case are solvable in O(n + m)
time.



A B C D E F G H I J K

B. Vari-directional Streets

To obtain the solution for a general digraph note that all vertices in the
same SCC (strongly connected components) either are all good or all bad.

Build all SCC’s and the condensation of the digraph (compressed graph
with vertices in SCC’s and edges between different SCC’s). Apply the
DAG solution to the condensation, output all vertices in good SCC’s.

Both condensation construction and DAG case are solvable in O(n + m)
time.



A B C D E F G H I J K

B. Vari-directional Streets

To obtain the solution for a general digraph note that all vertices in the
same SCC (strongly connected components) either are all good or all bad.

Build all SCC’s and the condensation of the digraph (compressed graph
with vertices in SCC’s and edges between different SCC’s). Apply the
DAG solution to the condensation, output all vertices in good SCC’s.

Both condensation construction and DAG case are solvable in O(n + m)
time.



A B C D E F G H I J K

C. Club members

Find a hamiltonian cycle in an cube graph with 2n vertices that contains
a given perfect matching.

Outline: constructive solution that reduces to smaller problems.

For details read the enclosed solution.



A B C D E F G H I J K

C. Club members

Find a hamiltonian cycle in an cube graph with 2n vertices that contains
a given perfect matching.

Outline: constructive solution that reduces to smaller problems.

For details read the enclosed solution.



A B C D E F G H I J K

C. Club members

Find a hamiltonian cycle in an cube graph with 2n vertices that contains
a given perfect matching.

Outline: constructive solution that reduces to smaller problems.

For details read the enclosed solution.



A B C D E F G H I J K

D. Necklace

We are given an array of n integers. All subsequences of the array are
ordered by sum of the elements; subsequences with equal sum are
ordered lexicographically as sorted tuples of indices. Find k-th
subsequence in this ordering. n, k 6 106.

Outline: a Dijkstra-like approach with enough optimizations.



A B C D E F G H I J K

D. Necklace

We are given an array of n integers. All subsequences of the array are
ordered by sum of the elements; subsequences with equal sum are
ordered lexicographically as sorted tuples of indices. Find k-th
subsequence in this ordering. n, k 6 106.

Outline: a Dijkstra-like approach with enough optimizations.



A B C D E F G H I J K

D. Necklace

Let us generate all subsequences in order. We start from the empty
sequence. At each moment we will have a data structure of all
candidates to be the next minimum. A general idea is to extract
minimum from the structure and try all options to expand it by an
element it doesn’t contain yet.

We have to take care not to add the same entry to the structure twice.
One way of doing it is to only append the elements that go later in the
sequence than the previous last element, hence there is a unique order of
adding elements for each subsequence.

Optimization 1: if the size of the structure is greater than k, we can
remove the largest entry.

Optimization 2: sort the given numbers (don’t forget to store their
original indices), stop trying to append a number when the sum becomes
too great to fit in the structure.



A B C D E F G H I J K

D. Necklace

Let us generate all subsequences in order. We start from the empty
sequence. At each moment we will have a data structure of all
candidates to be the next minimum. A general idea is to extract
minimum from the structure and try all options to expand it by an
element it doesn’t contain yet.

We have to take care not to add the same entry to the structure twice.
One way of doing it is to only append the elements that go later in the
sequence than the previous last element, hence there is a unique order of
adding elements for each subsequence.

Optimization 1: if the size of the structure is greater than k, we can
remove the largest entry.

Optimization 2: sort the given numbers (don’t forget to store their
original indices), stop trying to append a number when the sum becomes
too great to fit in the structure.



A B C D E F G H I J K

D. Necklace

Let us generate all subsequences in order. We start from the empty
sequence. At each moment we will have a data structure of all
candidates to be the next minimum. A general idea is to extract
minimum from the structure and try all options to expand it by an
element it doesn’t contain yet.

We have to take care not to add the same entry to the structure twice.
One way of doing it is to only append the elements that go later in the
sequence than the previous last element, hence there is a unique order of
adding elements for each subsequence.

Optimization 1: if the size of the structure is greater than k, we can
remove the largest entry.

Optimization 2: sort the given numbers (don’t forget to store their
original indices), stop trying to append a number when the sum becomes
too great to fit in the structure.



A B C D E F G H I J K

D. Necklace

Let us generate all subsequences in order. We start from the empty
sequence. At each moment we will have a data structure of all
candidates to be the next minimum. A general idea is to extract
minimum from the structure and try all options to expand it by an
element it doesn’t contain yet.

We have to take care not to add the same entry to the structure twice.
One way of doing it is to only append the elements that go later in the
sequence than the previous last element, hence there is a unique order of
adding elements for each subsequence.

Optimization 1: if the size of the structure is greater than k, we can
remove the largest entry.

Optimization 2: sort the given numbers (don’t forget to store their
original indices), stop trying to append a number when the sum becomes
too great to fit in the structure.



A B C D E F G H I J K

D. Necklace

This approach might still take too long since we have a lot of options to
append a number on each step.

Optimization 3: leave only O(1) transitions from each state by
introducting new information. Instead of (sum, subset of indices,
[possibly lower bound for index]), we will now have (lower bound for sum
after adding the number i , subset of indices, current position i).

While processing the next state we have to try to add number i and add
the subset to the list of generated sequences. However, in the sequel we
may opt to skip the number. The two transitions are to continue with
the number ai included or not included in the subset; in both cases the
current position is increased by 1. Note that the lower bound for the sum
does not decrease in any case.

It is easy to see that the target sequence will not have more than log2 k
elements since all the subsets of a subsequence precede it in the order.
Thus the described solution has complexity O(n log n + k log2 k), since
we compare two states in O(log2 k) time.



A B C D E F G H I J K

D. Necklace

This approach might still take too long since we have a lot of options to
append a number on each step.

Optimization 3: leave only O(1) transitions from each state by
introducting new information. Instead of (sum, subset of indices,
[possibly lower bound for index]), we will now have (lower bound for sum
after adding the number i , subset of indices, current position i).

While processing the next state we have to try to add number i and add
the subset to the list of generated sequences. However, in the sequel we
may opt to skip the number. The two transitions are to continue with
the number ai included or not included in the subset; in both cases the
current position is increased by 1. Note that the lower bound for the sum
does not decrease in any case.

It is easy to see that the target sequence will not have more than log2 k
elements since all the subsets of a subsequence precede it in the order.
Thus the described solution has complexity O(n log n + k log2 k), since
we compare two states in O(log2 k) time.



A B C D E F G H I J K

D. Necklace

This approach might still take too long since we have a lot of options to
append a number on each step.

Optimization 3: leave only O(1) transitions from each state by
introducting new information. Instead of (sum, subset of indices,
[possibly lower bound for index]), we will now have (lower bound for sum
after adding the number i , subset of indices, current position i).

While processing the next state we have to try to add number i and add
the subset to the list of generated sequences. However, in the sequel we
may opt to skip the number. The two transitions are to continue with
the number ai included or not included in the subset; in both cases the
current position is increased by 1. Note that the lower bound for the sum
does not decrease in any case.

It is easy to see that the target sequence will not have more than log2 k
elements since all the subsets of a subsequence precede it in the order.
Thus the described solution has complexity O(n log n + k log2 k), since
we compare two states in O(log2 k) time.



A B C D E F G H I J K

D. Necklace

This approach might still take too long since we have a lot of options to
append a number on each step.

Optimization 3: leave only O(1) transitions from each state by
introducting new information. Instead of (sum, subset of indices,
[possibly lower bound for index]), we will now have (lower bound for sum
after adding the number i , subset of indices, current position i).

While processing the next state we have to try to add number i and add
the subset to the list of generated sequences. However, in the sequel we
may opt to skip the number. The two transitions are to continue with
the number ai included or not included in the subset; in both cases the
current position is increased by 1. Note that the lower bound for the sum
does not decrease in any case.

It is easy to see that the target sequence will not have more than log2 k
elements since all the subsets of a subsequence precede it in the order.
Thus the described solution has complexity O(n log n + k log2 k), since
we compare two states in O(log2 k) time.



A B C D E F G H I J K

E. Amusing Journeys

We are given a connected graph without multiple edges. Determine if all
simple closed paths in the graph have the same length. If that is the
case, count these cycles modulo 109 + 7.

Outline: if the condition holds, the biconnected blocks have very special
form.



A B C D E F G H I J K

E. Amusing Journeys

We are given a connected graph without multiple edges. Determine if all
simple closed paths in the graph have the same length. If that is the
case, count these cycles modulo 109 + 7.

Outline: if the condition holds, the biconnected blocks have very special
form.



A B C D E F G H I J K

E. Amusing Journeys

Each cycle of the graph lies completely inside of a biconnected
component. Consider a separate component.

If the component consists of a single edge, then it contains no cycles.

If the component is a cycle of length l , then we have 2l closed paths for
every choice of starting point and direction.

Otherwise, suppose that all simple cycles contain l edges each. Consider
a pair C1, C2 of intersecting cycles, and take their symmetrical difference
S (that is, the set of edges that are present in exactly one of the cycles).

The set S has less than 2l edges, and can be decomposed into simple
cycles. By assumption, S must itself be a cycle of length l . If that is the
case, the intersection of C1 and C2 must be a path of length l/2. Thus
C1 ∪ C2 is a graph that consists of three edge-disjoint paths of length l/2
between a pair of vertices v and u.

Note that no additional edges can be added between vertices of C1 ∪ C2

so that each cycle has length l .



A B C D E F G H I J K

E. Amusing Journeys

Each cycle of the graph lies completely inside of a biconnected
component. Consider a separate component.

If the component consists of a single edge, then it contains no cycles.

If the component is a cycle of length l , then we have 2l closed paths for
every choice of starting point and direction.

Otherwise, suppose that all simple cycles contain l edges each. Consider
a pair C1, C2 of intersecting cycles, and take their symmetrical difference
S (that is, the set of edges that are present in exactly one of the cycles).

The set S has less than 2l edges, and can be decomposed into simple
cycles. By assumption, S must itself be a cycle of length l . If that is the
case, the intersection of C1 and C2 must be a path of length l/2. Thus
C1 ∪ C2 is a graph that consists of three edge-disjoint paths of length l/2
between a pair of vertices v and u.

Note that no additional edges can be added between vertices of C1 ∪ C2

so that each cycle has length l .



A B C D E F G H I J K

E. Amusing Journeys

Each cycle of the graph lies completely inside of a biconnected
component. Consider a separate component.

If the component consists of a single edge, then it contains no cycles.

If the component is a cycle of length l , then we have 2l closed paths for
every choice of starting point and direction.

Otherwise, suppose that all simple cycles contain l edges each. Consider
a pair C1, C2 of intersecting cycles, and take their symmetrical difference
S (that is, the set of edges that are present in exactly one of the cycles).

The set S has less than 2l edges, and can be decomposed into simple
cycles. By assumption, S must itself be a cycle of length l . If that is the
case, the intersection of C1 and C2 must be a path of length l/2. Thus
C1 ∪ C2 is a graph that consists of three edge-disjoint paths of length l/2
between a pair of vertices v and u.

Note that no additional edges can be added between vertices of C1 ∪ C2

so that each cycle has length l .



A B C D E F G H I J K

E. Amusing Journeys

Each cycle of the graph lies completely inside of a biconnected
component. Consider a separate component.

If the component consists of a single edge, then it contains no cycles.

If the component is a cycle of length l , then we have 2l closed paths for
every choice of starting point and direction.

Otherwise, suppose that all simple cycles contain l edges each. Consider
a pair C1, C2 of intersecting cycles, and take their symmetrical difference
S (that is, the set of edges that are present in exactly one of the cycles).

The set S has less than 2l edges, and can be decomposed into simple
cycles. By assumption, S must itself be a cycle of length l . If that is the
case, the intersection of C1 and C2 must be a path of length l/2. Thus
C1 ∪ C2 is a graph that consists of three edge-disjoint paths of length l/2
between a pair of vertices v and u.

Note that no additional edges can be added between vertices of C1 ∪ C2

so that each cycle has length l .



A B C D E F G H I J K

E. Amusing Journeys

Each cycle of the graph lies completely inside of a biconnected
component. Consider a separate component.

If the component consists of a single edge, then it contains no cycles.

If the component is a cycle of length l , then we have 2l closed paths for
every choice of starting point and direction.

Otherwise, suppose that all simple cycles contain l edges each. Consider
a pair C1, C2 of intersecting cycles, and take their symmetrical difference
S (that is, the set of edges that are present in exactly one of the cycles).

The set S has less than 2l edges, and can be decomposed into simple
cycles. By assumption, S must itself be a cycle of length l . If that is the
case, the intersection of C1 and C2 must be a path of length l/2. Thus
C1 ∪ C2 is a graph that consists of three edge-disjoint paths of length l/2
between a pair of vertices v and u.

Note that no additional edges can be added between vertices of C1 ∪ C2

so that each cycle has length l .



A B C D E F G H I J K

E. Amusing Journeys

Each cycle of the graph lies completely inside of a biconnected
component. Consider a separate component.

If the component consists of a single edge, then it contains no cycles.

If the component is a cycle of length l , then we have 2l closed paths for
every choice of starting point and direction.

Otherwise, suppose that all simple cycles contain l edges each. Consider
a pair C1, C2 of intersecting cycles, and take their symmetrical difference
S (that is, the set of edges that are present in exactly one of the cycles).

The set S has less than 2l edges, and can be decomposed into simple
cycles. By assumption, S must itself be a cycle of length l . If that is the
case, the intersection of C1 and C2 must be a path of length l/2. Thus
C1 ∪ C2 is a graph that consists of three edge-disjoint paths of length l/2
between a pair of vertices v and u.

Note that no additional edges can be added between vertices of C1 ∪ C2

so that each cycle has length l .



A B C D E F G H I J K

E. Amusing Journeys

If C1 ∪ C2 is not the whole component yet, there must be a cycle that
has common edges with C1 or C2, but doesn’t lie completely inside
C1 ∪ C2. By a similar argument, the new cycle must consist of two paths
of length l/2 between v and u: one old and one new.

It follows that all simple cycles in a biconnected component have same
length iff the component consists of several paths of equal length
between a certain pair of vertices.

In case the component is not an edge nor a cycle, these two vertices
should be exactly the vertices with degree greater than 2.

The path structure can be easily found if the component is given.

Finally, we can decompose the graph into biconnected components in
O(n + m) time. We should also check that the cycle lengths for different
components are equal.



A B C D E F G H I J K

E. Amusing Journeys

If C1 ∪ C2 is not the whole component yet, there must be a cycle that
has common edges with C1 or C2, but doesn’t lie completely inside
C1 ∪ C2. By a similar argument, the new cycle must consist of two paths
of length l/2 between v and u: one old and one new.

It follows that all simple cycles in a biconnected component have same
length iff the component consists of several paths of equal length
between a certain pair of vertices.

In case the component is not an edge nor a cycle, these two vertices
should be exactly the vertices with degree greater than 2.

The path structure can be easily found if the component is given.

Finally, we can decompose the graph into biconnected components in
O(n + m) time. We should also check that the cycle lengths for different
components are equal.



A B C D E F G H I J K

E. Amusing Journeys

If C1 ∪ C2 is not the whole component yet, there must be a cycle that
has common edges with C1 or C2, but doesn’t lie completely inside
C1 ∪ C2. By a similar argument, the new cycle must consist of two paths
of length l/2 between v and u: one old and one new.

It follows that all simple cycles in a biconnected component have same
length iff the component consists of several paths of equal length
between a certain pair of vertices.

In case the component is not an edge nor a cycle, these two vertices
should be exactly the vertices with degree greater than 2.

The path structure can be easily found if the component is given.

Finally, we can decompose the graph into biconnected components in
O(n + m) time. We should also check that the cycle lengths for different
components are equal.



A B C D E F G H I J K

E. Amusing Journeys

If C1 ∪ C2 is not the whole component yet, there must be a cycle that
has common edges with C1 or C2, but doesn’t lie completely inside
C1 ∪ C2. By a similar argument, the new cycle must consist of two paths
of length l/2 between v and u: one old and one new.

It follows that all simple cycles in a biconnected component have same
length iff the component consists of several paths of equal length
between a certain pair of vertices.

In case the component is not an edge nor a cycle, these two vertices
should be exactly the vertices with degree greater than 2.

The path structure can be easily found if the component is given.

Finally, we can decompose the graph into biconnected components in
O(n + m) time. We should also check that the cycle lengths for different
components are equal.



A B C D E F G H I J K

E. Amusing Journeys

If C1 ∪ C2 is not the whole component yet, there must be a cycle that
has common edges with C1 or C2, but doesn’t lie completely inside
C1 ∪ C2. By a similar argument, the new cycle must consist of two paths
of length l/2 between v and u: one old and one new.

It follows that all simple cycles in a biconnected component have same
length iff the component consists of several paths of equal length
between a certain pair of vertices.

In case the component is not an edge nor a cycle, these two vertices
should be exactly the vertices with degree greater than 2.

The path structure can be easily found if the component is given.

Finally, we can decompose the graph into biconnected components in
O(n + m) time. We should also check that the cycle lengths for different
components are equal.



A B C D E F G H I J K

F. Nim with a twist

Count the number of ways to remove kd Nim heaps out of n so that the
second player wins. d 6 10, total size of the heaps 6 107.

Outline: standard DP with optimization.



A B C D E F G H I J K

F. Nim with a twist

Count the number of ways to remove kd Nim heaps out of n so that the
second player wins. d 6 10, total size of the heaps 6 107.

Outline: standard DP with optimization.



A B C D E F G H I J K

F. Nim with a twist

Fact

The second player wins iff XOR of all heap sizes is zero.

Note that XOR of heap sizes ai is less than 2 max ai .

An O(nd max ai ) solution: dpi,m,x = number of subsets among first i
heaps such that the number of omitted heaps is m modulo d , and XOR
of all taken heaps’ sizes if x .

This DP has O(nd max ai ) states and transitions.

Optimization: let us process ai by increasing. By the time we process ai ,
we can’t get XOR of some smaller numbers greater than 2ai , so we won’t
store such values. Now appending a single number ai is done in O(ai ),
for the total complexity O(d

∑
ai + n log n).



A B C D E F G H I J K

F. Nim with a twist

Fact

The second player wins iff XOR of all heap sizes is zero.

Note that XOR of heap sizes ai is less than 2 max ai .

An O(nd max ai ) solution: dpi,m,x = number of subsets among first i
heaps such that the number of omitted heaps is m modulo d , and XOR
of all taken heaps’ sizes if x .

This DP has O(nd max ai ) states and transitions.

Optimization: let us process ai by increasing. By the time we process ai ,
we can’t get XOR of some smaller numbers greater than 2ai , so we won’t
store such values. Now appending a single number ai is done in O(ai ),
for the total complexity O(d

∑
ai + n log n).



A B C D E F G H I J K

F. Nim with a twist

Fact

The second player wins iff XOR of all heap sizes is zero.

Note that XOR of heap sizes ai is less than 2 max ai .

An O(nd max ai ) solution: dpi,m,x = number of subsets among first i
heaps such that the number of omitted heaps is m modulo d , and XOR
of all taken heaps’ sizes if x .

This DP has O(nd max ai ) states and transitions.

Optimization: let us process ai by increasing. By the time we process ai ,
we can’t get XOR of some smaller numbers greater than 2ai , so we won’t
store such values. Now appending a single number ai is done in O(ai ),
for the total complexity O(d

∑
ai + n log n).



A B C D E F G H I J K

F. Nim with a twist

Fact

The second player wins iff XOR of all heap sizes is zero.

Note that XOR of heap sizes ai is less than 2 max ai .

An O(nd max ai ) solution: dpi,m,x = number of subsets among first i
heaps such that the number of omitted heaps is m modulo d , and XOR
of all taken heaps’ sizes if x .

This DP has O(nd max ai ) states and transitions.

Optimization: let us process ai by increasing. By the time we process ai ,
we can’t get XOR of some smaller numbers greater than 2ai , so we won’t
store such values. Now appending a single number ai is done in O(ai ),
for the total complexity O(d

∑
ai + n log n).



A B C D E F G H I J K

G. Parade

In a given tree find a simple path such that the number of edges with
exactly one endpoint inside the path is maximized.

Outline: standard subtree DP.



A B C D E F G H I J K

G. Parade

In a given tree find a simple path such that the number of edges with
exactly one endpoint inside the path is maximized.

Outline: standard subtree DP.



A B C D E F G H I J K

G. Parade

First we solve a “vertical” version of the problem. Make the tree rooted,
and let down(v) be the answer if the path goes from v into its subtree,
and we only consider the edges in the subtree (no edge from v to the
parent). down(v) will allow for a single-vertex path (unlike the original
problem).

If chv is the number of children of v , then

down(v) = max

(
ch(v), ch(v)− 1 + max

u is a child of v
down(u)

)
.



A B C D E F G H I J K

G. Parade

First we solve a “vertical” version of the problem. Make the tree rooted,
and let down(v) be the answer if the path goes from v into its subtree,
and we only consider the edges in the subtree (no edge from v to the
parent). down(v) will allow for a single-vertex path (unlike the original
problem).

If chv is the number of children of v , then

down(v) = max

(
ch(v), ch(v)− 1 + max

u is a child of v
down(u)

)
.



A B C D E F G H I J K

G. Parade

Now let the path be not necessarily vertical, and let v be the highest
vertex in the path.

If v is the root of the tree, then the maximal length of such path is either

ch(v)− 1 + max
u is a child of v

down(u)

if v is an endpoint,

or
ch(v)− 2 + max

u1,u2 — different children of v
(down(u1) + down(u2))

if v is a proper LCA of endpoints.

If v is not the root, we have to add 1 to both values to account for the
parent edge.

All the above can be computed in O(n) time.



A B C D E F G H I J K

G. Parade

Now let the path be not necessarily vertical, and let v be the highest
vertex in the path.

If v is the root of the tree, then the maximal length of such path is either

ch(v)− 1 + max
u is a child of v

down(u)

if v is an endpoint,

or
ch(v)− 2 + max

u1,u2 — different children of v
(down(u1) + down(u2))

if v is a proper LCA of endpoints.

If v is not the root, we have to add 1 to both values to account for the
parent edge.

All the above can be computed in O(n) time.



A B C D E F G H I J K

G. Parade

Now let the path be not necessarily vertical, and let v be the highest
vertex in the path.

If v is the root of the tree, then the maximal length of such path is either

ch(v)− 1 + max
u is a child of v

down(u)

if v is an endpoint,

or
ch(v)− 2 + max

u1,u2 — different children of v
(down(u1) + down(u2))

if v is a proper LCA of endpoints.

If v is not the root, we have to add 1 to both values to account for the
parent edge.

All the above can be computed in O(n) time.



A B C D E F G H I J K

G. Parade

Now let the path be not necessarily vertical, and let v be the highest
vertex in the path.

If v is the root of the tree, then the maximal length of such path is either

ch(v)− 1 + max
u is a child of v

down(u)

if v is an endpoint,

or
ch(v)− 2 + max

u1,u2 — different children of v
(down(u1) + down(u2))

if v is a proper LCA of endpoints.

If v is not the root, we have to add 1 to both values to account for the
parent edge.

All the above can be computed in O(n) time.



A B C D E F G H I J K

G. Parade

Now let the path be not necessarily vertical, and let v be the highest
vertex in the path.

If v is the root of the tree, then the maximal length of such path is either

ch(v)− 1 + max
u is a child of v

down(u)

if v is an endpoint,

or
ch(v)− 2 + max

u1,u2 — different children of v
(down(u1) + down(u2))

if v is a proper LCA of endpoints.

If v is not the root, we have to add 1 to both values to account for the
parent edge.

All the above can be computed in O(n) time.



A B C D E F G H I J K

H. Messenger

In a directed graph, count the number of paths of length l from v to u
that don’t pass through v and u other than at start and finish. Many
queries of v , u, l .

Outline: count the standard DP pathsv ,u,l for the number of all paths
without any constraints, then carefully subtract all excess paths.



A B C D E F G H I J K

H. Messenger

In a directed graph, count the number of paths of length l from v to u
that don’t pass through v and u other than at start and finish. Many
queries of v , u, l .

Outline: count the standard DP pathsv ,u,l for the number of all paths
without any constraints, then carefully subtract all excess paths.



A B C D E F G H I J K

H. Messenger

We will have to count several DP’s. First is the standard pathsv ,u,l for
the total number of paths of length l from v to u:

pathsv ,v ,0 = 1

pathsv ,u,l =
∑

w :(v ,w) — an edge

pathsw ,u,l−1

paths ′v ,u,l — the number of paths of length l from v to u that contain v
only as the start. We want to subtract all non-suitable paths from total.
Let l ′ be the last moment a bad path passes through v . Hence the
formula:

paths ′v ,u,l = pathsv ,u,l −
l−1∑
l′=1

pathsv ,v ,l′paths
′
v ,u,l−l′



A B C D E F G H I J K

H. Messenger

We will have to count several DP’s. First is the standard pathsv ,u,l for
the total number of paths of length l from v to u:

pathsv ,v ,0 = 1

pathsv ,u,l =
∑

w :(v ,w) — an edge

pathsw ,u,l−1

paths ′v ,u,l — the number of paths of length l from v to u that contain v
only as the start. We want to subtract all non-suitable paths from total.
Let l ′ be the last moment a bad path passes through v . Hence the
formula:

paths ′v ,u,l = pathsv ,u,l −
l−1∑
l′=1

pathsv ,v ,l′paths
′
v ,u,l−l′



A B C D E F G H I J K

H. Messenger

cycle′v ,u,l — the number of paths of length l from v to v avoiding u. Let
l ′ be the last moment a bad path passes through u. Then

cycle′v ,u,l = dpv ,v ,l −
l−1∑
l′=1

dpv ,u,l′paths
′
u,v ,l−l′

Finally, paths ′′v ,u,l is the answer to the original problem. In a similar way
we have

paths ′′v ,u,l = paths ′v ,u,l −
l−1∑
l′=1

paths ′v ,u,l′cycle
′
u,v ,l−l′

All the above values can be computed in O(nml + n2l2) time, and each
query can be answered in O(1) time.



A B C D E F G H I J K

H. Messenger

cycle′v ,u,l — the number of paths of length l from v to v avoiding u. Let
l ′ be the last moment a bad path passes through u. Then

cycle′v ,u,l = dpv ,v ,l −
l−1∑
l′=1

dpv ,u,l′paths
′
u,v ,l−l′

Finally, paths ′′v ,u,l is the answer to the original problem. In a similar way
we have

paths ′′v ,u,l = paths ′v ,u,l −
l−1∑
l′=1

paths ′v ,u,l′cycle
′
u,v ,l−l′

All the above values can be computed in O(nml + n2l2) time, and each
query can be answered in O(1) time.



A B C D E F G H I J K

H. Messenger

cycle′v ,u,l — the number of paths of length l from v to v avoiding u. Let
l ′ be the last moment a bad path passes through u. Then

cycle′v ,u,l = dpv ,v ,l −
l−1∑
l′=1

dpv ,u,l′paths
′
u,v ,l−l′

Finally, paths ′′v ,u,l is the answer to the original problem. In a similar way
we have

paths ′′v ,u,l = paths ′v ,u,l −
l−1∑
l′=1

paths ′v ,u,l′cycle
′
u,v ,l−l′

All the above values can be computed in O(nml + n2l2) time, and each
query can be answered in O(1) time.



A B C D E F G H I J K

I. Diligent Johny

We are given a permutation. We repeatedly go from the current
permutation to lexicographically previous one using minimal number of
element swaps (not necessarily adjacent!). How many swaps we will
make in total before we arrive to the (1, . . . , n) permutation?

Outline: combinatorial argument, then “number-by-permutation”-like
algorithm with RSQ.



A B C D E F G H I J K

I. Diligent Johny

We are given a permutation. We repeatedly go from the current
permutation to lexicographically previous one using minimal number of
element swaps (not necessarily adjacent!). How many swaps we will
make in total before we arrive to the (1, . . . , n) permutation?

Outline: combinatorial argument, then “number-by-permutation”-like
algorithm with RSQ.



A B C D E F G H I J K

I. Diligent Johny

Note that we can just as well go from (1, . . . , n) to the next permutation
until we arrive at the given one. In the sequel we will use this
restatement.

Let f (n) be the total number of swaps to proceed from (1, . . . , n) to
(n, . . . , 1).

To do that, first we have to get from (1, . . . , n) to (1, n, . . . , 2). Next we
have to change (1, n, . . . , 2) into (2, 1, 3, . . . , n), then to (2, n, . . . , 3, 1),
and so on.

In general, we have n steps of “swap the suffix” sort. Each of them take
f (n − 1) steps.

Between these steps we have to change (k, n, . . . , k + 1, k − 1, . . . , 1) to
(k + 1, 1, . . . , k, k + 2, . . . , n), where k = 1, . . . , n − 1.



A B C D E F G H I J K

I. Diligent Johny

Note that we can just as well go from (1, . . . , n) to the next permutation
until we arrive at the given one. In the sequel we will use this
restatement.

Let f (n) be the total number of swaps to proceed from (1, . . . , n) to
(n, . . . , 1).

To do that, first we have to get from (1, . . . , n) to (1, n, . . . , 2). Next we
have to change (1, n, . . . , 2) into (2, 1, 3, . . . , n), then to (2, n, . . . , 3, 1),
and so on.

In general, we have n steps of “swap the suffix” sort. Each of them take
f (n − 1) steps.

Between these steps we have to change (k, n, . . . , k + 1, k − 1, . . . , 1) to
(k + 1, 1, . . . , k, k + 2, . . . , n), where k = 1, . . . , n − 1.



A B C D E F G H I J K

I. Diligent Johny

Note that we can just as well go from (1, . . . , n) to the next permutation
until we arrive at the given one. In the sequel we will use this
restatement.

Let f (n) be the total number of swaps to proceed from (1, . . . , n) to
(n, . . . , 1).

To do that, first we have to get from (1, . . . , n) to (1, n, . . . , 2). Next we
have to change (1, n, . . . , 2) into (2, 1, 3, . . . , n), then to (2, n, . . . , 3, 1),
and so on.

In general, we have n steps of “swap the suffix” sort. Each of them take
f (n − 1) steps.

Between these steps we have to change (k, n, . . . , k + 1, k − 1, . . . , 1) to
(k + 1, 1, . . . , k, k + 2, . . . , n), where k = 1, . . . , n − 1.



A B C D E F G H I J K

I. Diligent Johny

Note that we can just as well go from (1, . . . , n) to the next permutation
until we arrive at the given one. In the sequel we will use this
restatement.

Let f (n) be the total number of swaps to proceed from (1, . . . , n) to
(n, . . . , 1).

To do that, first we have to get from (1, . . . , n) to (1, n, . . . , 2). Next we
have to change (1, n, . . . , 2) into (2, 1, 3, . . . , n), then to (2, n, . . . , 3, 1),
and so on.

In general, we have n steps of “swap the suffix” sort. Each of them take
f (n − 1) steps.

Between these steps we have to change (k, n, . . . , k + 1, k − 1, . . . , 1) to
(k + 1, 1, . . . , k, k + 2, . . . , n), where k = 1, . . . , n − 1.



A B C D E F G H I J K

I. Diligent Johny

Note that we can just as well go from (1, . . . , n) to the next permutation
until we arrive at the given one. In the sequel we will use this
restatement.

Let f (n) be the total number of swaps to proceed from (1, . . . , n) to
(n, . . . , 1).

To do that, first we have to get from (1, . . . , n) to (1, n, . . . , 2). Next we
have to change (1, n, . . . , 2) into (2, 1, 3, . . . , n), then to (2, n, . . . , 3, 1),
and so on.

In general, we have n steps of “swap the suffix” sort. Each of them take
f (n − 1) steps.

Between these steps we have to change (k , n, . . . , k + 1, k − 1, . . . , 1) to
(k + 1, 1, . . . , k, k + 2, . . . , n), where k = 1, . . . , n − 1.



A B C D E F G H I J K

I. Diligent Johny

Fact

The minimal number of swaps to change a permutation p into
permutation q is equal to n - (number of cycles in p−1q).

One can check with some case analysis (or with brute-force for small
numbers) that the number of swaps needed to change
(k, n, . . . , k + 1, k − 1, . . . , 1) into (k + 1, 1, . . . , k, k + 2, . . . , n) doesn’t
depend on k and is equal to dn/2e.

Thus, we have f (n) = nf (n − 1) + (n − 1)dn/2e. Values of this
recurrence can readily be found in O(n) time.



A B C D E F G H I J K

I. Diligent Johny

Fact

The minimal number of swaps to change a permutation p into
permutation q is equal to n - (number of cycles in p−1q).

One can check with some case analysis (or with brute-force for small
numbers) that the number of swaps needed to change
(k, n, . . . , k + 1, k − 1, . . . , 1) into (k + 1, 1, . . . , k , k + 2, . . . , n) doesn’t
depend on k and is equal to dn/2e.

Thus, we have f (n) = nf (n − 1) + (n − 1)dn/2e. Values of this
recurrence can readily be found in O(n) time.



A B C D E F G H I J K

I. Diligent Johny

Fact

The minimal number of swaps to change a permutation p into
permutation q is equal to n - (number of cycles in p−1q).

One can check with some case analysis (or with brute-force for small
numbers) that the number of swaps needed to change
(k, n, . . . , k + 1, k − 1, . . . , 1) into (k + 1, 1, . . . , k , k + 2, . . . , n) doesn’t
depend on k and is equal to dn/2e.

Thus, we have f (n) = nf (n − 1) + (n − 1)dn/2e. Values of this
recurrence can readily be found in O(n) time.



A B C D E F G H I J K

I. Diligent Johny

Now to solve the “partial” problem: find the number of steps to obtain
(p1, . . . , pn) from (1, . . . , n).

Suppose we have just obtained the correct prefix of length l − 1, so all
the rest elements pl , . . . , pn are currently in increasing order.

Let xl be the index of pl among the remaining elements if we order them
by increasing. To place pl in l-th position we have to do xl − 1
repetitions of “swap the suffix” and “apply next permutation so that l-th
element increases”.

By previous arguments, we have to perform
(xl − 1)(f (n − l) + d(n − l)/2e) swaps. After that, pl is in its place, and
all the later elements are sorted, thus we reduce to a smaller problem.

Values of xl can be found using any kind of RSQ data structure in
O(n log n).



A B C D E F G H I J K

I. Diligent Johny

Now to solve the “partial” problem: find the number of steps to obtain
(p1, . . . , pn) from (1, . . . , n).

Suppose we have just obtained the correct prefix of length l − 1, so all
the rest elements pl , . . . , pn are currently in increasing order.

Let xl be the index of pl among the remaining elements if we order them
by increasing. To place pl in l-th position we have to do xl − 1
repetitions of “swap the suffix” and “apply next permutation so that l-th
element increases”.

By previous arguments, we have to perform
(xl − 1)(f (n − l) + d(n − l)/2e) swaps. After that, pl is in its place, and
all the later elements are sorted, thus we reduce to a smaller problem.

Values of xl can be found using any kind of RSQ data structure in
O(n log n).



A B C D E F G H I J K

I. Diligent Johny

Now to solve the “partial” problem: find the number of steps to obtain
(p1, . . . , pn) from (1, . . . , n).

Suppose we have just obtained the correct prefix of length l − 1, so all
the rest elements pl , . . . , pn are currently in increasing order.

Let xl be the index of pl among the remaining elements if we order them
by increasing. To place pl in l-th position we have to do xl − 1
repetitions of “swap the suffix” and “apply next permutation so that l-th
element increases”.

By previous arguments, we have to perform
(xl − 1)(f (n − l) + d(n − l)/2e) swaps. After that, pl is in its place, and
all the later elements are sorted, thus we reduce to a smaller problem.

Values of xl can be found using any kind of RSQ data structure in
O(n log n).



A B C D E F G H I J K

I. Diligent Johny

Now to solve the “partial” problem: find the number of steps to obtain
(p1, . . . , pn) from (1, . . . , n).

Suppose we have just obtained the correct prefix of length l − 1, so all
the rest elements pl , . . . , pn are currently in increasing order.

Let xl be the index of pl among the remaining elements if we order them
by increasing. To place pl in l-th position we have to do xl − 1
repetitions of “swap the suffix” and “apply next permutation so that l-th
element increases”.

By previous arguments, we have to perform
(xl − 1)(f (n − l) + d(n − l)/2e) swaps. After that, pl is in its place, and
all the later elements are sorted, thus we reduce to a smaller problem.

Values of xl can be found using any kind of RSQ data structure in
O(n log n).



A B C D E F G H I J K

I. Diligent Johny

Now to solve the “partial” problem: find the number of steps to obtain
(p1, . . . , pn) from (1, . . . , n).

Suppose we have just obtained the correct prefix of length l − 1, so all
the rest elements pl , . . . , pn are currently in increasing order.

Let xl be the index of pl among the remaining elements if we order them
by increasing. To place pl in l-th position we have to do xl − 1
repetitions of “swap the suffix” and “apply next permutation so that l-th
element increases”.

By previous arguments, we have to perform
(xl − 1)(f (n − l) + d(n − l)/2e) swaps. After that, pl is in its place, and
all the later elements are sorted, thus we reduce to a smaller problem.

Values of xl can be found using any kind of RSQ data structure in
O(n log n).



A B C D E F G H I J K

J. Not Nim

Two players are playing a game with n pairs of heaps of stones. Initially
both heaps in i-th pair contain ai stones. The first player can remove any
number of stones from any heap. The second player must move several
stones between heaps in some pair. The first player wants to remove all
stones in minimal number of moves, while the second player wants to
play as long as possible. Find out the number of moves in the game if
both play optimally.

Outline: evil problem with hard-to-identify cases.



A B C D E F G H I J K

J. Not Nim

Two players are playing a game with n pairs of heaps of stones. Initially
both heaps in i-th pair contain ai stones. The first player can remove any
number of stones from any heap. The second player must move several
stones between heaps in some pair. The first player wants to remove all
stones in minimal number of moves, while the second player wants to
play as long as possible. Find out the number of moves in the game if
both play optimally.

Outline: evil problem with hard-to-identify cases.



A B C D E F G H I J K

J. Not Nim

Couple of simple observations:

The first player always empties one of the heaps.

After the first player emptied a heap, the second player should try to
even out the heaps in this pair when this is possible.



A B C D E F G H I J K

J. Not Nim

Couple of simple observations:

The first player always empties one of the heaps.

After the first player emptied a heap, the second player should try to
even out the heaps in this pair when this is possible.



A B C D E F G H I J K

J. Not Nim

The first player can easily win in F =
∑n

i=1(2 + blog2 aic) (we only count
first player’s moves here), but sometimes he can win faster.

We will say that the first player can snatch a move if he forces the second
player to move in a situation when each pair of heaps is either empty or
has (2k , 2k) stones for certain integer k (probably different for different
pairs).

These are the only situations that help the first player to get under the
upper bound F . Indeed, if the second player could skip moves, then F
would be the exact number of moves. Thus, the only way to do better
than F is to force the second player to do harmful moves.

Note that if some pair contains unequal heaps, than the second player
can effectively skip a move, thus such situations are not appealing to the
first player.



A B C D E F G H I J K

J. Not Nim

The first player can easily win in F =
∑n

i=1(2 + blog2 aic) (we only count
first player’s moves here), but sometimes he can win faster.

We will say that the first player can snatch a move if he forces the second
player to move in a situation when each pair of heaps is either empty or
has (2k , 2k) stones for certain integer k (probably different for different
pairs).

These are the only situations that help the first player to get under the
upper bound F . Indeed, if the second player could skip moves, then F
would be the exact number of moves. Thus, the only way to do better
than F is to force the second player to do harmful moves.

Note that if some pair contains unequal heaps, than the second player
can effectively skip a move, thus such situations are not appealing to the
first player.



A B C D E F G H I J K

J. Not Nim

The first player can easily win in F =
∑n

i=1(2 + blog2 aic) (we only count
first player’s moves here), but sometimes he can win faster.

We will say that the first player can snatch a move if he forces the second
player to move in a situation when each pair of heaps is either empty or
has (2k , 2k) stones for certain integer k (probably different for different
pairs).

These are the only situations that help the first player to get under the
upper bound F . Indeed, if the second player could skip moves, then F
would be the exact number of moves. Thus, the only way to do better
than F is to force the second player to do harmful moves.

Note that if some pair contains unequal heaps, than the second player
can effectively skip a move, thus such situations are not appealing to the
first player.



A B C D E F G H I J K

J. Not Nim

The first player can easily win in F =
∑n

i=1(2 + blog2 aic) (we only count
first player’s moves here), but sometimes he can win faster.

We will say that the first player can snatch a move if he forces the second
player to move in a situation when each pair of heaps is either empty or
has (2k , 2k) stones for certain integer k (probably different for different
pairs).

These are the only situations that help the first player to get under the
upper bound F . Indeed, if the second player could skip moves, then F
would be the exact number of moves. Thus, the only way to do better
than F is to force the second player to do harmful moves.

Note that if some pair contains unequal heaps, than the second player
can effectively skip a move, thus such situations are not appealing to the
first player.



A B C D E F G H I J K

J. Not Nim

Suppose that the first player will move in a pair that currently contains
(x , x) stones. Forcing a second player’s move here will result in (x − 1, 0)
instead of (x , 0) (if the second player could skip). The move will be
harmful if blog2(x − 1)c < blog2 xc, or, equivalently, x = 2k .

Since all (2k , 2k) pairs can be forced into (1, 1) pairs, the first player
wants to force situations when all pairs are (1, 1) or empty.

Forcing of a move happens when the first player empties the last heap in
some pair. When this happens, we want all other pairs to contain equal
heaps (otherwise, the second player can effectively skip).

We want to make sizes of all pairs as close to (1, 1) as possible without
making unequal pairs. By making enough moves, a pair (x , x) can be
forced to a pair (2k − 1, 2k − 1), where k is the number of leading ones in
binary representation of x . Moving further in this pair will result in
unequal heaps. We suppose that at all times the heaps are reduced to
this form.



A B C D E F G H I J K

J. Not Nim

Suppose that the first player will move in a pair that currently contains
(x , x) stones. Forcing a second player’s move here will result in (x − 1, 0)
instead of (x , 0) (if the second player could skip). The move will be
harmful if blog2(x − 1)c < blog2 xc, or, equivalently, x = 2k .

Since all (2k , 2k) pairs can be forced into (1, 1) pairs, the first player
wants to force situations when all pairs are (1, 1) or empty.

Forcing of a move happens when the first player empties the last heap in
some pair. When this happens, we want all other pairs to contain equal
heaps (otherwise, the second player can effectively skip).

We want to make sizes of all pairs as close to (1, 1) as possible without
making unequal pairs. By making enough moves, a pair (x , x) can be
forced to a pair (2k − 1, 2k − 1), where k is the number of leading ones in
binary representation of x . Moving further in this pair will result in
unequal heaps. We suppose that at all times the heaps are reduced to
this form.



A B C D E F G H I J K

J. Not Nim

Suppose that the first player will move in a pair that currently contains
(x , x) stones. Forcing a second player’s move here will result in (x − 1, 0)
instead of (x , 0) (if the second player could skip). The move will be
harmful if blog2(x − 1)c < blog2 xc, or, equivalently, x = 2k .

Since all (2k , 2k) pairs can be forced into (1, 1) pairs, the first player
wants to force situations when all pairs are (1, 1) or empty.

Forcing of a move happens when the first player empties the last heap in
some pair. When this happens, we want all other pairs to contain equal
heaps (otherwise, the second player can effectively skip).

We want to make sizes of all pairs as close to (1, 1) as possible without
making unequal pairs. By making enough moves, a pair (x , x) can be
forced to a pair (2k − 1, 2k − 1), where k is the number of leading ones in
binary representation of x . Moving further in this pair will result in
unequal heaps. We suppose that at all times the heaps are reduced to
this form.



A B C D E F G H I J K

J. Not Nim

Suppose that the first player will move in a pair that currently contains
(x , x) stones. Forcing a second player’s move here will result in (x − 1, 0)
instead of (x , 0) (if the second player could skip). The move will be
harmful if blog2(x − 1)c < blog2 xc, or, equivalently, x = 2k .

Since all (2k , 2k) pairs can be forced into (1, 1) pairs, the first player
wants to force situations when all pairs are (1, 1) or empty.

Forcing of a move happens when the first player empties the last heap in
some pair. When this happens, we want all other pairs to contain equal
heaps (otherwise, the second player can effectively skip).

We want to make sizes of all pairs as close to (1, 1) as possible without
making unequal pairs. By making enough moves, a pair (x , x) can be
forced to a pair (2k − 1, 2k − 1), where k is the number of leading ones in
binary representation of x . Moving further in this pair will result in
unequal heaps. We suppose that at all times the heaps are reduced to
this form.



A B C D E F G H I J K

J. Not Nim

Suppose that the second player moves in a (2k − 1, 2k − 1) pair. If k = 0,
then we empty the pair and the forcing continues. Otherwise, after
dividing by two the heap turns into (2k−1 − 1, 2k−1 − 1).

On his move the first player has to choose (2k − 1, 2k − 1) pair and
empty it. At the end of this pair, the second player is then forced to
make a move in another pair.

Observation

Both the first and the second player will choose a pair with maximal k .

Indeed, the first player will want the second player to move in small pairs,
so he’ll eliminate the large ones.

Similarly, in the end the second player wants to have as few (1, 1) pairs
as possible, so he’ll avoid making them from (3, 3). Similarly, to avoid
making (3, 3) he’ll avoid moving in (7, 7), and so on.



A B C D E F G H I J K

J. Not Nim

Suppose that the second player moves in a (2k − 1, 2k − 1) pair. If k = 0,
then we empty the pair and the forcing continues. Otherwise, after
dividing by two the heap turns into (2k−1 − 1, 2k−1 − 1).

On his move the first player has to choose (2k − 1, 2k − 1) pair and
empty it. At the end of this pair, the second player is then forced to
make a move in another pair.

Observation

Both the first and the second player will choose a pair with maximal k .

Indeed, the first player will want the second player to move in small pairs,
so he’ll eliminate the large ones.

Similarly, in the end the second player wants to have as few (1, 1) pairs
as possible, so he’ll avoid making them from (3, 3). Similarly, to avoid
making (3, 3) he’ll avoid moving in (7, 7), and so on.



A B C D E F G H I J K

J. Not Nim

Suppose that the second player moves in a (2k − 1, 2k − 1) pair. If k = 0,
then we empty the pair and the forcing continues. Otherwise, after
dividing by two the heap turns into (2k−1 − 1, 2k−1 − 1).

On his move the first player has to choose (2k − 1, 2k − 1) pair and
empty it. At the end of this pair, the second player is then forced to
make a move in another pair.

Observation

Both the first and the second player will choose a pair with maximal k .

Indeed, the first player will want the second player to move in small pairs,
so he’ll eliminate the large ones.

Similarly, in the end the second player wants to have as few (1, 1) pairs
as possible, so he’ll avoid making them from (3, 3). Similarly, to avoid
making (3, 3) he’ll avoid moving in (7, 7), and so on.



A B C D E F G H I J K

J. Not Nim

Suppose that the second player moves in a (2k − 1, 2k − 1) pair. If k = 0,
then we empty the pair and the forcing continues. Otherwise, after
dividing by two the heap turns into (2k−1 − 1, 2k−1 − 1).

On his move the first player has to choose (2k − 1, 2k − 1) pair and
empty it. At the end of this pair, the second player is then forced to
make a move in another pair.

Observation

Both the first and the second player will choose a pair with maximal k .

Indeed, the first player will want the second player to move in small pairs,
so he’ll eliminate the large ones.

Similarly, in the end the second player wants to have as few (1, 1) pairs
as possible, so he’ll avoid making them from (3, 3). Similarly, to avoid
making (3, 3) he’ll avoid moving in (7, 7), and so on.



A B C D E F G H I J K

J. Not Nim

Suppose that the second player moves in a (2k − 1, 2k − 1) pair. If k = 0,
then we empty the pair and the forcing continues. Otherwise, after
dividing by two the heap turns into (2k−1 − 1, 2k−1 − 1).

On his move the first player has to choose (2k − 1, 2k − 1) pair and
empty it. At the end of this pair, the second player is then forced to
make a move in another pair.

Observation

Both the first and the second player will choose a pair with maximal k .

Indeed, the first player will want the second player to move in small pairs,
so he’ll eliminate the large ones.

Similarly, in the end the second player wants to have as few (1, 1) pairs
as possible, so he’ll avoid making them from (3, 3). Similarly, to avoid
making (3, 3) he’ll avoid moving in (7, 7), and so on.



A B C D E F G H I J K

J. Not Nim

Finally, we can model the game as follows. After reducing all heaps to
(2k − 1, 2k − 1) form we’ll store the number of pairs with
k = 0, 1, . . . , log2 A (where A is the maximal value of a heap size).

The first player will choose k as large as possible and erase one
(2k − 1)-pair. Then the second player chooses the largest possible pair
too.

If he has k > 0, then he turns this pair into (2k−1 − 1) and the first
player moves again.

Otherwise, all the rest moves of the second player are forced.

All preprocessing and the final game process can be implemented in
O(n logA) time.

If you have trouble understanding this solution, try to work out why the
answer for 3, 3, 3 input is 15 instead of 17.



A B C D E F G H I J K

J. Not Nim

Finally, we can model the game as follows. After reducing all heaps to
(2k − 1, 2k − 1) form we’ll store the number of pairs with
k = 0, 1, . . . , log2 A (where A is the maximal value of a heap size).

The first player will choose k as large as possible and erase one
(2k − 1)-pair. Then the second player chooses the largest possible pair
too.

If he has k > 0, then he turns this pair into (2k−1 − 1) and the first
player moves again.

Otherwise, all the rest moves of the second player are forced.

All preprocessing and the final game process can be implemented in
O(n logA) time.

If you have trouble understanding this solution, try to work out why the
answer for 3, 3, 3 input is 15 instead of 17.



A B C D E F G H I J K

J. Not Nim

Finally, we can model the game as follows. After reducing all heaps to
(2k − 1, 2k − 1) form we’ll store the number of pairs with
k = 0, 1, . . . , log2 A (where A is the maximal value of a heap size).

The first player will choose k as large as possible and erase one
(2k − 1)-pair. Then the second player chooses the largest possible pair
too.

If he has k > 0, then he turns this pair into (2k−1 − 1) and the first
player moves again.

Otherwise, all the rest moves of the second player are forced.

All preprocessing and the final game process can be implemented in
O(n logA) time.

If you have trouble understanding this solution, try to work out why the
answer for 3, 3, 3 input is 15 instead of 17.



A B C D E F G H I J K

J. Not Nim

Finally, we can model the game as follows. After reducing all heaps to
(2k − 1, 2k − 1) form we’ll store the number of pairs with
k = 0, 1, . . . , log2 A (where A is the maximal value of a heap size).

The first player will choose k as large as possible and erase one
(2k − 1)-pair. Then the second player chooses the largest possible pair
too.

If he has k > 0, then he turns this pair into (2k−1 − 1) and the first
player moves again.

Otherwise, all the rest moves of the second player are forced.

All preprocessing and the final game process can be implemented in
O(n logA) time.

If you have trouble understanding this solution, try to work out why the
answer for 3, 3, 3 input is 15 instead of 17.



A B C D E F G H I J K

J. Not Nim

Finally, we can model the game as follows. After reducing all heaps to
(2k − 1, 2k − 1) form we’ll store the number of pairs with
k = 0, 1, . . . , log2 A (where A is the maximal value of a heap size).

The first player will choose k as large as possible and erase one
(2k − 1)-pair. Then the second player chooses the largest possible pair
too.

If he has k > 0, then he turns this pair into (2k−1 − 1) and the first
player moves again.

Otherwise, all the rest moves of the second player are forced.

All preprocessing and the final game process can be implemented in
O(n logA) time.

If you have trouble understanding this solution, try to work out why the
answer for 3, 3, 3 input is 15 instead of 17.



A B C D E F G H I J K

J. Not Nim

Finally, we can model the game as follows. After reducing all heaps to
(2k − 1, 2k − 1) form we’ll store the number of pairs with
k = 0, 1, . . . , log2 A (where A is the maximal value of a heap size).

The first player will choose k as large as possible and erase one
(2k − 1)-pair. Then the second player chooses the largest possible pair
too.

If he has k > 0, then he turns this pair into (2k−1 − 1) and the first
player moves again.

Otherwise, all the rest moves of the second player are forced.

All preprocessing and the final game process can be implemented in
O(n logA) time.

If you have trouble understanding this solution, try to work out why the
answer for 3, 3, 3 input is 15 instead of 17.



A B C D E F G H I J K

K. Stutter

Find longest common subsequence of two sequences a and b that
consists of pairs of equal numbers. You can perform O(nm) operations,
but can’t store Ω(nm) memory.

Outline: optimize the memory with additional bookkeeping.



A B C D E F G H I J K

K. Stutter

Find longest common subsequence of two sequences a and b that
consists of pairs of equal numbers. You can perform O(nm) operations,
but can’t store Ω(nm) memory.

Outline: optimize the memory with additional bookkeeping.



A B C D E F G H I J K

K. Stutter

The standard DP solution for LCS can be modified as follows. Let dpi,j
be equal to the maximal length of LCS of first i and j elements of a and
b respectively if we are forced to take both elements of each pair
simultaneously.

Let prev(a, i , c) be the last occurence of c in a before position i . Then
dpi,j = max(dpi−1,j , dpi,j−1) if ai 6= bj , and
max(dpi−1,j , dpi,j−1, 2 + dpprev(a,i,c)−1,prev(b,j,c)−1) if ai = bj = c (all
prev ’s have to be defined, of course).



A B C D E F G H I J K

K. Stutter

The standard DP solution for LCS can be modified as follows. Let dpi,j
be equal to the maximal length of LCS of first i and j elements of a and
b respectively if we are forced to take both elements of each pair
simultaneously.

Let prev(a, i , c) be the last occurence of c in a before position i . Then
dpi,j = max(dpi−1,j , dpi,j−1) if ai 6= bj , and
max(dpi−1,j , dpi,j−1, 2 + dpprev(a,i,c)−1,prev(b,j,c)−1) if ai = bj = c (all
prev ’s have to be defined, of course).



A B C D E F G H I J K

K. Stutter

Let us compute dpi,j row by row. We can’t store the whole matrix, so
we’ll just have two last rows.

To account for dpprev(...),prev(...) let us store

dpequalj = max
i|ai=bj

dpi−1,j−1,

where i ranges over all processed rows.

Note that we can use dpequalprev(b,j,c) in place of dpprev(a,i,c)−1,prev(b,j,c)−1.

This eliminates our need for Ω(nm) memory and requires only O(n + m)
memory.



A B C D E F G H I J K

K. Stutter

Let us compute dpi,j row by row. We can’t store the whole matrix, so
we’ll just have two last rows.

To account for dpprev(...),prev(...) let us store

dpequalj = max
i|ai=bj

dpi−1,j−1,

where i ranges over all processed rows.

Note that we can use dpequalprev(b,j,c) in place of dpprev(a,i,c)−1,prev(b,j,c)−1.

This eliminates our need for Ω(nm) memory and requires only O(n + m)
memory.



A B C D E F G H I J K

K. Stutter

Let us compute dpi,j row by row. We can’t store the whole matrix, so
we’ll just have two last rows.

To account for dpprev(...),prev(...) let us store

dpequalj = max
i|ai=bj

dpi−1,j−1,

where i ranges over all processed rows.

Note that we can use dpequalprev(b,j,c) in place of dpprev(a,i,c)−1,prev(b,j,c)−1.

This eliminates our need for Ω(nm) memory and requires only O(n + m)
memory.


