Number Theory Contest Editorial

Mikhail Tikhomirov

November 20, 2015

A. Sieve It!

Use the linear Eratosthene's sieve to find minimal prime divisors of all numbers. The use the following formulas for $n=p_{1}^{\alpha_{1}} \ldots p_{m}^{\alpha_{m}}$

$$
\begin{aligned}
& s_{0}(n)=\prod_{i=1}^{m}\left(\alpha_{i}+1\right) \\
& s_{1}(n)=\prod_{i=1}^{m} \sum_{j=0}^{\alpha_{i}} p_{i}^{j} \\
& \varphi(n)=\prod_{i=1}^{m}\left(p_{i}-1\right) p_{i}^{\alpha_{i}-1}
\end{aligned}
$$

B. Cabbages Under Hyperbola

The number of rectangles with rightmost $x=x_{r}$ is
$x_{r}\left(\left\lfloor n / x_{r}\right\rfloor\left(\left\lfloor n / x_{r}\right\rfloor+1\right) / 2\right)$,
so the total number of rectangles is
$\sum_{x=1}^{n} x(\lfloor n / x\rfloor(\lfloor n / x\rfloor+1) / 2)$
This sum be computed in $O(\sqrt{n})$ by grouping summands with $\lfloor n / x\rfloor=k<\sqrt{n}$, and counting all the rest explicitly.

C. Coprime Tuples

By inclusion-exclusion, the answer is $\sum_{d=1}^{n} \mu(d)\lfloor n / d\rfloor^{k}$. After \sqrt{n}-breaking, this appears as

$$
\sum_{d=1}^{\sim \sqrt{n}} \mu(d)\left\lfloor\frac{n}{d}\right\rfloor^{k}+\sum_{x=1}^{\sim \sqrt{n}} x^{d}\left(M\left(\left\lfloor\frac{n}{x}\right\rfloor\right)-M\left(\left\lfloor\frac{n}{x+1}\right\rfloor\right)\right)
$$

Compute $M(n)$ along with all $M(\lfloor n / k\rfloor)$ in $O\left(n^{2 / 3}\right)$, then find the sum in $O(\sqrt{n})$.

D. Count The Semiprimes

The answer is $\sum_{p_{j} \leqslant \sqrt{n}} \pi\left(\left\lfloor n / p_{j}\right\rfloor\right)-j$. Note that the $O\left(n^{2 / 3}(\log n)^{1 / 3}\right)$ method of counting $\pi(n)$ also allows to obtain all $\pi(\lfloor n / x\rfloor)$, given all the needed queries will be preprocessed. Perform preliminary calculation of $d p_{n / p_{j}, k}$ for all $p_{j}<\sqrt{n}$ to make sure that queries will be preprocessed. Total complexity does not change.

