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A. Another Rubik’s Puzzle?

Given a 4× 4 grid with 4 red, green, blue and yellow cells each. On
each step, we can perform a cyclic shift of a row/column. Find the
shortest sequence of moves that places all red, green, blue and
yellow cells in rows, in that order. We know that for all
configurations 12 moves are enough.
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A. Another Rubik’s Puzzle?

There are 16 possible different moves from each position. Full
brute-force approach would have to try 1612 possible sequences,
which is too much.

However, meet-in-the-middle approach will work nicely. Let’s try all
sequences of 6 first moves from the initial position, and record
shortest distance for all reachable positions.
Similarly, try all sequences of 6 last moves from the final position
(we would have to do them backwards, but it doesn’t matter since
the moves are symmetrical). Record the shortest distances as well.
Check all positions reachable from both initial and final positions,
and try to improve the answer by the sum of two distances.
Number of operations will be rouhgly 166 log(166).
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B. Being Solarty Systematic

We are given a set of points inside a 3-dimensional torus, along
with their masses and velocites. If at an integer time moment two
or more points occupy the same place, they merge into a single
point with mass begin sum of all collided points’ masses, and
velocity becomes (roughly) average of all colliding particles’
velocities. Determine the set of points after the last collision
happened. All coordinates and velocities are always integer.
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B. Being Solarty Systematic

How do we determine when two points will collide?

The time t satisfies equations
x1 + tv1x ≡ x2 + tv2x (mod nx)
y1 + tv1y ≡ y2 + tv2y (mod ny )
z1 + tv1z ≡ z2 + tv2z (mod nz)
Each equation is equivalent to a linear modular equation
ax ≡ b (mod c). This can be solved in a standard manner: divide
a, b, c by GCD(a, c) (when possible), then solve the modular
inverse problem with Euclid’s algorithm.
Each of the equation will either produce a requirement
t ≡ z (mod c), or will imply that such t doesn’t exist. All the
requirements can be merged together using Chinese remainder
theorem. Thus a single collision can be determined in O(logC )
time, where C = max(nx , ny , nz).
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B. Being Solarty Systematic

How do we handle collisions of all points?

There will be at most n − 1 pairwise collisions to consider. To
determine first collision, for each pair of points determine the first
moment of collision, and choose the earliest one.
To repeatedly find the next collision, maintain an std::set of
collisions. On each step, choose the earliest collision, erase all
collisions which are no longer concerned with existing points, add
new collisions for the new merged point.
At the start, we have to add O(n2) collisions into the std::set.
For each collision, we have to do O(n log n) amount of work, for
O(n) operations with the std::set. That yields an
O(n2(log n + logC )) solution.
Since n is small, a more straightforward O(n3 logC ) solution can
pass. On each step, we can simply find pairwise collisions and
choose the earliest.
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C. Cyber-ZOO

A robot is standing in each of n intersections. If we press a
red/green button, all robots standing on i-th intersection move to
ri -th/gi -th intersection. Determine if we can gather all the robots
at a single intersection.
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C. Cyber-ZOO

This is basically the synchronizing word problem for DFA
(deterministic finite automaton).

A synchronizing word of a DFA is a word such that sends all
starting states to the same state. We have to determine if a
synchronizing word exists.
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C. Cyber-ZOO

Statement
A synchronizing word exists iff for any pair of states there is a word
that sends them to the same state.

Proof
Suppose there is a pair of states which are not sent to the same
state with any word. Then, clearly, no synchronizing word exists.
Assume the contrary, each pair of states can be synchronized. Let S
be the set of different states after following the current word w .
While |S | > 1, choose two different states from S and append the
synchronizing word for this pair w ′ to w . All states from S must
follow w ′, and the size of S will decrease. Eventually, S will contain
only one element, and thus w is a synchronizing word.
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C. Cyber-ZOO

How to check if all pairs of states can be synchronized?

Construct a graph with vertices in pairs (v , u), where v and u are
DFA states. For every symbol c , add edge from (v , u) to
(f (c , v), f (c, u)).
A pair (v , u) can be synchronized iff a vertex of the form (w ,w) is
reachable from it.
To determine this, run a DFS from all states of the form (w ,w)
using reversed edges. The reachable states are exactly the
synchronizable pairs.
The complexity is O(αn2), where α is the size of the alphabet. In
our problem, α = 2.
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D. Diversity of Tree

We are given a tree on n vertices, each vertex has a color. We
choose k random vertices and build the diameter of the induced
tree (among several possible diameters minimize indices of its
ends). What is the expected number of different colors among
vertices lying on the diameter?
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D. Diversity of Tree

First, for all pairs of vertices v , u find dvu — the distance between
v and u, and cvu — number of different colors on the path between
v and u.

All these values can be computed in O(n2 log n) with a DFS from
each vertex that maintains a set of all colors met on the path.
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D. Diversity of Tree

Now, what is the probability that (v , u) is minimal among the
diameters? Clearly, v and u should be among the chosen vertices.

Also, for every chosen vertex w dvw 6 dvu and dwu 6 dvu must
hold.
If these conditions hold for all chosen vertices w , then vu is indeed
a diameter, but probably not a lexicographically minimal one.
If more strict restrictions w > v ||dwu > dvu and w > u||dvw > dvu
hold, then (v , u) is the lexicographically minimal diameter.
If the number of vertices satisfying all these conditions is m, then
we should add cvu

( m
k−2
)
/
(n
k

)
to the answer.

m can be computed straightforwardly in O(n) by checking all
possible w . Thus we obtain an O(n3) solution.
The final, most heavy part can be optimized ∼ 32 times by using
bit operations.
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E. Expectation

We are given n points in the plane. We choose a random point q
inside a rectangle [0;X ]× [0;Y ]. Find the expectation of squared
distance to the second closest point.
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E. Expectation

Consider the case when pi is the closest point, and pj is the second
closest point. Where can q lie under these conditions?

We have inequalities d(q, pi ) < d(q, pj), and d(q, pj) < d(q, pk)
for all k different from i and j .
Each of these inequalities correspond to a half-plane given by
midperpendicular of two concerned points.
Thus, for each pi and pj , q can lie inside the intersection of the
original rectangle and several half-planes. This region is a convex
polygon (or an empty set) and can be built in O(n2) time by
repeated intersection of the current polygon and the next
half-plane.
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E. Expectation

It suffices to count the expectation of squared distance from q to pj
if q is inside the polygon (denote it P).

This can be considered a two-dimensional integral of d2(q, pj) over
P .
The integral can be separated into sum of integrals over directed
trapezoids lying under sides of the polygon.
The squared distance is a sum of quadratic polynomials in x and y ,
and can be integrated directly.
The total complexity is O(n4).
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F. Flight Cage

We are given a set of n rectangles in the plane, one of which is a
main rectangle. Also there is a line segment. Determine the total
length of the segments’ parts from which the view of the main
rectangle is not obstructed by any other rectangles.
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F. Flight Cage

If a rectangle A is partly obstructed by another rectangle B from
some point of view, then one of the sides of B partly obstructs one
of the sides of A.

Thus, we can find the subset of the point-of-view segment
such that a side of the main rectangle is not obstructed by
sides of all other rectangles.
Then, we will intersect the subsets for all sides of the main
rectangle.

We have thus reduced the problem to finding the subset of the
point-of-view segment from which a segment obstructs the view of
the other segment.
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F. Flight Cage

How to determine from which points of view one segment obstructs
the other segment?

A segment AB obstructs a point C from the point of view D
iff segments AB and CD intersect.
A segment AB obstructs a segment CD from the point of view
E iff it obstructs both C and D.
When moving along the point-of-view segment EF , the fact of
obstruction between segments AB and CD may change only at
points where lines AC , AD, BC , BD intersect the segment
EF . Thus, we can build all the intersection points and obtain
subsegments on which the result doesn’t change.
For each subsegment choose a point inside of it (e.g. the
middle of the segment) and check the obstruction directly;
thus we will obtain the result for the whole subsegment.
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F. Flight Cage

Performing this procedure for all rectangles, we will obtain O(n)
subsegments from which the main rectangle is obstructed.

Find their union in a standard sort-and-sweep manner. The total
complexity is O(n log n).
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G. Game Physics

Three balls 1, 2, and 3 are located on the table, and also there are
two holes at the corners of the table. We have to locate a cue ball
on a fixed horizontal line on the table and hit it so that:

the cue ball hits the ball 1, which in turn hits the ball 3, which
hits the top right hole
after reflecting from the ball 1, the cue ball hits the ball 2,
which hits the top left hole

Determine if this is possible to perform. See the problem statement
for description how balls are reflected on collision.
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G. Game Physics

Without much detail and formulas, the solution goes as follows:

The direction which ball 3 (that is, directly to the top right
hole) has to follow uniquely determines the point where the
ball 1 should hit it, and therefore determines the direction of
the ball 1. (Note that the point may be impossible to hit)
Similarly, the direction of the ball 1 determines the point
where the cue ball hits it.
Additionally, the direction of the ball 2 determines the point
where the cue ball hits it, and the direction of the cue ball
after reflection from the ball 1.

Note that reflections can be traced backwards. We can start
following the cue ball back from the collision with the ball 2, check
that it hits the ball 1 where it has to, and finally obtain its direction
before all collisions.
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G. Game Physics

How to determine the point of collision of two balls moving with
given velocities?

One of the balls may be considered static.
Let the moving ball have radius r . Shrink the moving ball and
expand the static ball by r .
The moving ball is now a point, so it suffices to intersect a straight
ray and a circle, which is done in a standard manner.
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H. Herrings

Given two large numbers n and l , count the number of ways to
represent n = x + y + z , such that x , y , z > l and none of x , y and
z contain 3 in their decimal representation.
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H. Herrings

This is a standard application of digit-wise DP.

Let us construct x , y and z from the least significant digits.
Suppose that we have placed k least digits so that the k least digits
of x + y + z match those of n.
In order to place the next digit, we have to know the carry c from
the previous digit, as well as which of the numbers x , y and z are
less than the number formed by the k least digits of l .
Make all these parameters of DP. That is, we count dpk,m,c , where
k is the number of considered digits, m ∈ [0; 7] encodes the
comparisons between x , y and z with suffix of l , and c is the
amount of carry from the least k digits when computing x + y + z .
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H. Herrings

Try all possible options of choosing d1, d2 and d3 (but don’t forget
to forbid the 3’s!) such that the (k + 1)-th digit matches, that is,
d1 + d2 + d3 + c ≡ nk+1 (mod 10),
where nk+1 is the (k + 1)-th least digit of n.

Consider the number d1x (x prepended with the digit d1). If
d1 6= lk+1 ((k + 1)-th least digit of l), then the result of
comparison between x and suffix of l is determined only by d1.
If d1 = lk+1, then the result of comparison is the same as
comparing the shorter suffix, which is stored as a parameter.
The answer is in the state when all digits are considered, all of x , y
and z are not less than l , and no further carry is needed.
In the general case of d-based numeral system, and k summands
instead of 3, the complexity of this solution is O(log n2kk · dk−1).
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I. Integer Sequence

Given a sequence of integers, answer the queries of two types:

assign x to all al , . . . , ar
for all i from l to r , assign GCD(ai , x) if ai > x , else leave ai
as it is
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I. Integer Sequence

Queries of type 1 can be processed with a standard segment tree
with lazy propagation.

To process queries of type 2 we will do the following:

Maintain segments of consecutive equal elements (blocks)
after every modification of the array (this can be done in
amortized O(log n) time per modification if we use an
std::set-like structure).
Store maximal elements in the same segment tree we use to
process queries of type 1.
To process a single query of type 2 on the segment [l ; r ]:

Extract maximum ai on the segment [l ; r ]
If ai 6 x , then all elements on the segment are at most x , and
nothing should be changed. Halt.
Otherwise, locate the block [L;R] which contains ai . Assign
GCD(ai , x) to all elements inside [l ; r ] ∩ [L;R].
Repeat until ai 6 x condition on the step 2 is met.
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Extract maximum ai on the segment [l ; r ]

If ai 6 x , then all elements on the segment are at most x , and
nothing should be changed. Halt.
Otherwise, locate the block [L;R] which contains ai . Assign
GCD(ai , x) to all elements inside [l ; r ] ∩ [L;R].
Repeat until ai 6 x condition on the step 2 is met.
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I. Integer Sequence

This algorithm works in O(T log n) per query, where T is the
number of blocks with elements greater than x .

A single query can clearly take a long time, but can we bound the
total working time?
Let [Li ;Ri ] be the blocks with elements xi .
Introduce the following quantity:

P =
∑

log2 xi ,

where the sum is taken over all blocks.
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I. Integer Sequence

Observation
Let A be the maximal possible value of ai . Then, every query of
type 1 increases P by at most 2 log2 A.

Proof
Some blocks can be deleted, at most one block is divided into two
parts, and at most one new block is created.
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I. Integer Sequence

Observation
If T blocks were considered while processed a query of type 2, P
decreases by at least T − 2 log2 A.

Proof
At most two new blocks are created at the ends of [l ; r ] (the query
segment).
On each considered segment, the value of xi is changed to a proper
divisor of xi , and thus is divided by at least 2.
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I. Integer Sequence

Together with the fact that P is always non-negative, we obtain

Statement
The sum of T over all queries of type 2 is at most O(m logA),
where m is the total number of queries.

It follows that the complexity of this solution is O(m logA log n).
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J. Johnny’s Quest

We are given a sequence of n integers ai . We can choose two
non-empty subsets S and T such that:

all elements of S lie to the left of all elements of T
XOR of all elements of S is equal to XOR of all elements of T

In how many ways S and T can be chosen?
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J. Johnny’s Quest

Count DP ck,x — the number of subsets of a1, . . . , ak having
XOR = x .

Similarly, count DP dk,x — the number of subsets of ak , . . . , an
having XOR = x .
The answer is

n∑
k=1

∑
x

(ck,x − ck−1,x)d
′
k+1,x ,

where d ′k+1,x is the number of non-empty subsets of ak+1, . . . , an
with XOR x (that is, dk+1,x if x 6= 0, and dk+1,x − 1 if x = 0).
The complexity is O(nA), where A is maximal value of ai .
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K. KenKen You Do It?

We are given a connected set of cells on a grid, an operation (+, -,
*, /) and the target result S . Count the number of ways to place
digits into cells so that the operation applied to all the numbers
gives result S , and no two cells in the same row or column contain
equal digits.
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K. KenKen You Do It?

Cases - and /: trivial.

Cases + and *: optimized brute-force.
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L. Leprechaun Hunt

We are given a graph. Two players are playing a game.

First player chooses V vertices of the graph and places his
tokens on them.
Second player chooses a free vertex and places his token.
On each turn, a player can move one of his tokens from a
vertex to an adjacent vertex.
The first player wins if he captures second player’s token.

Determine if the first player can win, and find the minimal number
of moves required to win.
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L. Leprechaun Hunt

A fairly standard game analysis.

The state of the game is fully given by the set of vertices occupied
by first player’s tokens and the vertex of the second player’s token.
The number of states is O(n2n), and the total number of
transitions is O(nm2n).
If we consider only sets of size V , the number of states becomes
O(
√
n2n).
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M. Mosaic

A grid is given, with some cells colored black and some of the black
cells containing numbers.
We have to fill some of the white cells with black triangles so that

Each white region is a rectangle (possibly rotated by 45 ◦)
Each black cell with number x has exactly x adjacent cells
with triangles

We know that such coloring is unique. Find the number of triangles
in it.
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M. Mosaic

Assume that the board is surrounded by non-numbered black cells.

For a given coloring, how can we check if the coloring is valid?
It suffices to look only at 2× 2 subrectangles. If the coloring is
invalid, then in some subrectangle an invalid situation occurs (a
side of a rectangle is discontinued or continued at invalid angle).
After precomputing all valid 2× 2 simple brute-force approach
works fast enough.
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