Long Contest Editorial

AIM Fund
November 18, 2015

A. Substrings and Subsequences

Observation:

Strings that have same substrings and subsequences have the form “aa...ab...b” or “aaaa. .. aaa

Proof:

Suppose there are u characters “a” in string, consider a subsequence “a...a” (u times). It’s also
a substring, so all “a”’s are placed continuously in s.

Suppose there are at least 3 different letters used. So the string looks like “a...ab...bc...c...”.
Subsequence “ac” is not a substring.

7

Now fix a pair of different letters, a and b, then probability of all strings of the form “a...ab...b”
is > o pla)p(b)" " It’s a geometrlc progression, that can be calculated in O(logn).

Probability of the string “a...a” is p(a)”

Overall complexity is O(m?logn), where m = 26 is the number of different letters.

B. Bus stop

Probability that minimum is less than x equals F(z) = 1 — [[(1 — x/t;), so we need to
i=1

calculate integral [zF"(z)dz. F(z) is a product of polynomials, so we could calculate it by divide-

and-conquer and FFT in O(nlog®n), but coefficients will be too big and it may not work with

appropriate precision. Let t,,,;, = min(t;). Calculate probability py of exactly k of random variables

less than t,,;,. These probabilities equal coefficients of polynomials H ((ti — tomin) /ti + timin/ti -).
i=1

n
Then the answer equals Z i t@.’f’f , because expected value of minimum of k£ independent uniformly

distributed on (0;t) Varlables equals <. Complexity O(nlog”n)

+1

C. Collection of sets

Let’s find a solution for £ = 7 at first. Divide 14 elements into groups of two elements, and
compose a collection of 27 subsets as follows: for ¢ = 0,1,...,27 — 1, build the i-th subset: if
the j-bit of 7 is 0, take the first element from the j-th group, else take the second element from

the j-th group. If the weights in some group are equal, then the minimum is not unique. So, the
probability of the good assignment is 277 (in each group the weights are different).

To obtain a solution for & > 7, we can take a solution for 14 — k£ and take the complements of
the subsets in this collection. Now we assume that £ < 7.

Consider the system of m one-element subsets. The probability of the good assignment for it is
obviously m -2~ — one element’s weight equal to 1 and others equal to 2. Let’s merge the answers
for £ = 7 and for £ = 1 then. Divide the set into ¢ pairs and the remaining 14 — 2¢ elements.
Compose the collection of the subsets in the following way: take 2! subsets from the ¢ pairs using
the previous construction, and from each such subset compose a subset for the collection adding
one element from the last 14 — 2t elements — overall, there are 2' - (14 — 2¢) such subsets. The
probability of the good assignment is the product of those probabilities for the two collections,
so it is equal to 27¢ - (14 — 2t) - 22714 = 21711 (14 — 2¢). Tt is the solution for k = ¢t + 1, so the
probability of the good assignment for that collection is equal to 2¥715 . (16 — 2k). It is easy to

check that for £ < 6 that probability is less than 1(1)—0.

D. Decomposition

First of all, how to determine if £ > 07 That is, how to determine if the given graph can be
represented as a product of another graph and a single edge?

The product of a graph G and an edge is the graph H that consists of two copies of G with
corresponding vertices of copies connected by an edge. We have to find a suitable partition of
vertices of H into two parts so that the edges between the parts form a perfect matching, and two
induced subgraphs on the parts are equal with accordance to the matching.

Let the graph H be connected. Suppose we know a pair of corresponding vertices from different
parts. Then, we can unambigiously restore the whole partition. Let’s start the BFS-like process:
each vertex has one of three states, 0 (“unvisited”), 1 (“part is determined, but corresponding
vertex in another part is not found”), 2 (“corresponding vertex is found”). Initially, two vertices
of the pair have state 2. The BFS will traverse the halves of the graph in parallel while matching
corresponding vertices.

Consider a vertex v with state 2. All its yet unvisited neighbours must have the same part as
v, so their states become 1 and they're added to the queue.

Consider a vertex v with state 1. If the original pair was chosen correctly, exactly one of
unvisited neighbours of v must lie in the different part than v, and it must be its corresponding
vertex. Mark them with 2 and add them to the queue once more.

This process will build a partition into two halves in O(m) time, given a pair of corresponding
vertices. Since we do not know a pair from the start, choose a vertex v and try to build a partition
with all pairs (v, neighbour of v). This works in O(m deg(v)) time. If we choose v to be the vertex
with minimal degree, the complexity becomes O(m?/n), since the minimal degree is O(m/n). In
a connected graph n = Q(,/m), thus the complexity is O(m?/?).

If we have succeeded to represent the graph as a product with an edge, we can further repeat
the process on one of the resulting parts, and so on. Thus we will obtain the representation of
the graph as a product of another graph and a Boolean cube of maximal order, since the Boolean
cube is a Cartesian power of a single edge. If on some step there is more than one possible way
to partite the graph into two halves, each of them will produce isomorphic parts, thus it doesn’t
matter which one we’ll choose. The total complexity of the repeated process is still O(m?/?).

It suffices to run the process for all connected components of the graph and choose minimal &
over all components. The actual representation should be then carefully restored.

E. Easy Everest

If two climbers are initially on heights ¢g; and h; and should be on the same height in the end,
their total spent energy is |g; — hj|.

Sort both arrays g and h. In the optimal answer, for all ¢ climbers on heights g; and h; should
be grouped together on the same height. Otherwise, there are pairs (g,, hy) and (g., hq) such that
Ja < gc and hy, > hg, but they can be swapped to make the answer better. Thus, the answer is

Yoy lgi — hl.

F. Sum of divisors

We need to express n as a sum n/a; +n/as + ...+ n/ax, where all a; divide n.

Obviously, minimum of ay,as,...,a; does not exceed k (otherwise the sum is less than n).
Consider some set ay, as, ..., a such that 1/a;+1/as+...+1/a; = 1. It gives us the representation
for all n divisible by lem(aq, as, ..., ax). So we need to generate all lem-s of such subsets.

Do bruteforce using the mentioned observation and halt it if the current denominator is already
divisible by some previously considered lem(aq, as, ..., ax). Having generated them, you can see
that for £ < 7 all lem-s are less than 200, and for each k£ there are no more than 15 of them. Now
our problem is to count the number of integers not exceeding n such that they are divisible by at
least one of these lem-s. These can be done using preprocessing with inclusion-exclusion formula.
For each possible lem prod of these numbers, store the coefficient the number [ﬁj has when we
use inclusion-exclusion formula for n. There are no more than 800 different prod’s for k < 7. After
that, we can solve one test using approximately 800 operations.

. Guess sinus

Send ? 107?, the sign of answer determines sign0 — the sign of a. Then run binary search on
absolute value of answer: [= 0, 7 = 10°. Consider one step of binary search: mid = (I+7r)/2+eps.
Send ? 7/mid and if sign0 - sign > 0 then r = mid, else | = mid. When r — [become less than
107% the answer (I + r)/2 will be acceptable.

H. Matrices dot product

O(n?k) dynamics. Let’s calculate number dp[k][i][j] = dot product of matrix dpl[i...i+2%)[j...j+
2%) with Tj.. dp[0][i][j] = t[i][]

dplk + 1][i][j] = dplk][i][]aco + dp[K][i][j + 2"]aoy + dp[k][i + 2*][]aro + dp[k][i + 2°][j + 2*]ars

Answer for k-th query is maximum and minimum of dp[k][i][;] for all 4, j.

I. I18n

In this problem you need to process all words consequently and store for each i18n(z) value all
words with same 18n. You can store this info in map or dictionary for example. Then for every
new word calculate 118n and check that there is only one word with same value and this word
equals the current word.

J. Segment Sort

Notice that costs satisfy the triangle inequality w;;; < w; + w;. Split array into atoms — the
minimal segments [l; r| such that sets of elements at [1;1 — 1], [I;7] and [r 4+ 1;n] in the given and
in the sorted arrays coincide. The minimality here means that there is no atom [I’; '], which is a
proper subsegment of [I; r|. It is easy to prove that we need to cover all atoms of length more than
one by nonintersected segments with minimal total cost, and sort these segments. We can find the
atoms in linear time: iterate from 1 to n over initial array and sorted one and mark a point to split
the segments if the counts of every number have been processed in both arrays are equal. Then
calculate the following array: for every position ¢ where right end of its atom r; is situated. Then
calculate dynamics with n states. i-th state is a minimal cost of sorting prefix of length ¢. Each
state could be recalculated in O(y/n) time: for every possible cost of last sorted segment ¢ < y/n:

for (int t = 1; t *x t <= n; ++t) {
int j = rlmax(0, i - t*t)];
dli]l = min(d[i], t + d[j1);

Another approach is to calculate dynamics dp[c] — the maximal prefix which can be sorted
using ¢ operations. The are O(y/n) states, the transition takes O(atoms) operations. The total
complexity of both solutions is O(ny/n).

K. Tree Generation

In this problem you need to write a test generator at first and then calculate different statistics
for different values of type. For example, you can calculate the number of leaves in the generated
trees for all values of type and observe that their average values form a decreasing sequence. Than,
given a tree, calculate the number of its leaves and output the type for which the expected number
of leaves is the closest to that number. This gives an average result of 96-97%, with the minimum
result 92% on tests.

