
Z-function 

For given S (of length n) let’s define array z. z[0] is not defined, all other items are 

defined as follows: z[i] is the length of the largest common prefix of string S and string S[i..n-i]. 

Let’s calculate z[1] in O(n). Now let’s consider z[k], for such k that answer is calculated 

for all smaller k. Let R stand for the maximum among all i + z[i] for i < k, and L - is i 

corresponding to it. Then from definition of Z-function s[0..R-L-1] = s[L..R-1] and s[R-L] != s[R]. 

Hence, z[k] >= min(z[k - L], R - k).  

 

Proof: By the definition of Z-function strings s[0..z[k - L] - 1] and s[(k - L)..(k - L) + z[k - L] 

- 1] are equal (so, all their prefixes of same length as well). Hence s[0..min(z[k - L], R - k) - 1] = 

s[(k - L)..(k - L) + min(z[k - L], R - k) - 1] = s[k..k + min(z[k - L], R - k) - 1].  

In last equality we used the fact that s[0..R - L - 1] = s[L..R - 1] and added L to the both 

borders of the second string getting borders of third one by this. But we needed to change z[k - 

L] in min(z[k - L], R - k), in order to not get out of R - L - 1 in left part of equality and out of R - 1 

in the right one. □ 

 

Hence, we can initialize z[k] = min(z[k - L], R - k), and calculate z-function in naive way 

after this incrementing it by 1 till s[k + z[k]] = s[z[k]]. After this we can see that if k + z[k - L] < R, 

then z[k] = z[k - L], i.e., we will calculate z[k] in O(1), in the other case every time we will 

increase z[k], R will be increased as well. 

To determine the complexity of this algorithm we should remember than on each step 

we either calculate z[k] in O(1) or increase R. We also never decrease R and R = n in the end 

so it can be increased no more than n times. Hence algorithm works in O(n). 

For curious reader: Consider two strings S and P, you are to find all occurrences of P in 

S in linear time with the help of z-function. Tip: Consider string P#S. 

 

Note: Similar idea is used in Manacher's algorithm of finding all subpalindromes of given string 

in O(n) time. You can find it here: http://codeforces.com/blog/entry/12143 

It is worth noting that algorithm can be simplified to the case when we interested only in 

subpalindromes of odd length. We should use following trick: insert meta-character ‘#’ between 

every pair of letters. Hence code will be simplified a lot, because every palindrome of initial 

string has exact center now - it is usual character for palindromes of odd length and meta-

character ‘#’ for palindromes of even length. 

  

http://codeforces.com/blog/entry/12143


 Prefix-function 

 

For given string S let’s call P its border if it is both prefix and suffix of string S. We will 

also use this word talking about length of P. 

For given string S let’s define integer array pi. pi[0] equals 0 by definition (from now and 

on we will use 0-indexation), other elements are defined as follows: pi[i] is the maximum border 

of string S[0..i]. Array pi is called prefix-function. 

Let’s calculate pi[k] after pi[i] is calculated for every i < k. Consider following properties if 

prefix-function: 

1) if string s[0..k] has border t, then string s[0..k-1] has border t - 1 

2) if string s[0..k-1] has border t-1 and s[k] = s[t], then s[0..k] has t. Hence we can check 

in О(1) whether we can extend the border to the value t. 

So we can brute-force all borders of s[0..k-1] in descending order and after that choose the 

largest among them which can be extended to be a border of s[0..k]. In this way we will obtain 

the maximum border of s[0..k]. For string s[0..k-1] maximum border equals pi[k - 1], next one 

equals pi[pi[k - 1] - 1] and so on. 

Now we can more strictly formulate the algorithm of prefix-function calculation. Let’s 

calculate prefix-function one by one for each prefix of given string. To calculate next p[k] let’s 

brute-force all borders  of s[0..k-1] in descending order (p[k - 1], p[p[k - 1] - 1] and so on), until 

we find one we can extend. After that let’s stop the cycle and extend it getting p[k]. 

Consider length of current border. We can make one of two following actions with 

border: 

1) replace it with the next in descending order (which decreases length) 

2) extending current border (which increases length by 1) 

Second type of action was used no more than n times. Hence we can use first action no more 

than n times (because length is always non-negative) 

Hence, algorithm works in O(n). 

 

For curious reader: Consider two strings S and P, you are to find all occurrences of P in 

S in linear time with the help of prefix-function. Tip: Consider string P#S. 

 

Note: On every step this algorithm can take O(n) time. There are algorithms which take 

O(1) time on each step. To obtain this you should use so-called pattern matching automaton or 

automaton of prefix-function. About this and also about generalization of prefix-function on the 

case of many strings (well-known Aho-Corasick algorithm) you can read in the following article: 

http://codeforces.com/blog/entry/14854 

http://codeforces.com/blog/entry/14854

