Z-function

For given S (of length n) let's define array z. $z[0]$ is not defined, all other items are defined as follows: $z[i]$ is the length of the largest common prefix of string S and string $S[i . . n-i]$.

Let's calculate $z[1]$ in $O(n)$. Now let's consider $z[k]$, for such k that answer is calculated for all smaller k. Let R stand for the maximum among all $i+z[i]$ for $i<k$, and L - is i corresponding to it. Then from definition of Z-function $s[0 . . R-L-1]=s[L . . R-1]$ and $s[R-L]!=s[R]$. Hence, $z[k]>=\min (z[k-L], R-k)$.

Proof: By the definition of Z-function strings $s[0 . . z[k-L]-1]$ and $s[(k-L) . .(k-L)+z[k-L]$ -1] are equal (so, all their prefixes of same length as well). Hence $s[0 . . \min (z[k-L], R-k)-1]=$ $s[(k-L) . .(k-L)+\min (z[k-L], R-k)-1]=s[k . . k+\min (z[k-L], R-k)-1]$.

In last equality we used the fact that $s[0 . . R-L-1]=s[L . . R-1]$ and added L to the both borders of the second string getting borders of third one by this. But we needed to change $z_{[} k-$ $L]$ in $\min (z[k-L], R-k)$, in order to not get out of $R-L-1$ in left part of equality and out of $R-1$ in the right one.

Hence, we can initialize $z[k]=\min (z[k-L], R-k)$, and calculate z-function in naive way after this incrementing it by 1 till $s[k+z[k]]=s[z[k]]$. After this we can see that if $k+z[k-L]<R$, then $z[k]=z[k-L]$, i.e., we will calculate $z[k]$ in $O(1)$, in the other case every time we will increase $z[k]$, R will be increased as well.

To determine the complexity of this algorithm we should remember than on each step we either calculate $z[k]$ in $O(1)$ or increase R. We also never decrease R and $R=n$ in the end so it can be increased no more than n times. Hence algorithm works in $O(n)$.

For curious reader: Consider two strings S and P, you are to find all occurrences of P in S in linear time with the help of z-function. Tip: Consider string P\#S.

Note: Similar idea is used in Manacher's algorithm of finding all subpalindromes of given string in $\mathrm{O}(\mathrm{n})$ time. You can find it here: $\mathrm{http}: / /$ codeforces.com/blog/entry/12143
It is worth noting that algorithm can be simplified to the case when we interested only in subpalindromes of odd length. We should use following trick: insert meta-character '\#' between every pair of letters. Hence code will be simplified a lot, because every palindrome of initial string has exact center now - it is usual character for palindromes of odd length and metacharacter '\#' for palindromes of even length.

Prefix-function

For given string S let's call P its border if it is both prefix and suffix of string S. We will also use this word talking about length of P.

For given string S let's define integer array pi. pi[0] equals 0 by definition (from now and on we will use 0 -indexation), other elements are defined as follows: pi[i] is the maximum border of string $\mathrm{S}[0 . \mathrm{i}]$. Array pi is called prefix-function.

Let's calculate $\mathrm{pi}[\mathrm{k}]$ after pi[i] is calculated for every $\mathrm{i}<\mathrm{k}$. Consider following properties if prefix-function:

1) if string $s[0 . . k]$ has border t, then string $s[0 . . k-1]$ has border $t-1$
2) if string $s[0 . . k-1]$ has border $t-1$ and $s[k]=s[t]$, then $s[0 . . k]$ has t. Hence we can check in $\mathrm{O}(1)$ whether we can extend the border to the value t.
So we can brute-force all borders of s[0..k-1] in descending order and after that choose the largest among them which can be extended to be a border of $s[0 . . k]$. In this way we will obtain the maximum border of $s[0 . . k]$. For string $s[0 . . k-1]$ maximum border equals pi[k-1], next one equals pi[pi[k-1]-1] and so on.

Now we can more strictly formulate the algorithm of prefix-function calculation. Let's calculate prefix-function one by one for each prefix of given string. To calculate next $\mathrm{p}[\mathrm{k}]$ let's brute-force all borders of $s[0 . . k-1]$ in descending order ($p[k-1], p[p[k-1]-1]$ and so on), until we find one we can extend. After that let's stop the cycle and extend it getting $\mathrm{p}[\mathrm{k}]$.

Consider length of current border. We can make one of two following actions with border:

1) replace it with the next in descending order (which decreases length)
2) extending current border (which increases length by 1)

Second type of action was used no more than n times. Hence we can use first action no more than n times (because length is always non-negative)

Hence, algorithm works in $\mathrm{O}(\mathrm{n})$.

For curious reader: Consider two strings S and P, you are to find all occurrences of P in S in linear time with the help of prefix-function. Tip: Consider string P\#S.

Note: On every step this algorithm can take $O(n)$ time. There are algorithms which take $\mathrm{O}(1)$ time on each step. To obtain this you should use so-called pattern matching automaton or automaton of prefix-function. About this and also about generalization of prefix-function on the case of many strings (well-known Aho-Corasick algorithm) you can read in the following article:
http://codeforces.com/blog/entry/14854

