Cartesian tree Theory and applications

Gleb Evstropov
glebshp@yandex.ru

November 14, 2015

1 Some notations

- u, v, w - some nodes of the binary search tree;
- $\operatorname{parent}(v)$ - the parent of some node v in the binary search tree. If v is the root then parent $(v)=N I L$;
- left (v) - left child of some node v in the binary search tree. If the left subtree is empty, then $\operatorname{left}(v)=N I L$;
- $\operatorname{right}(v)$ — right child of some node v in the binary search tree. If the right subtree is empty, then $\operatorname{right}(v(=N I L$;
- $k e y(v)$ - the value of a node v that affects the tree structure;
- $x(v)$ - another way to denote keys in Cartesian trees. Usually, $x(v)=k e y(v)$.
- $y(v)$ - some additional value associated with the node v and used to build the tree;
- subtree (v) - the set of all nodes that lie inside the subtree of some node $v(v$ is also included);
- $\operatorname{size}(v)$ - the size of the subtree of some node v;
- $x_{l}(v)$ - the minimum key in the subtree of the node v, that is:

$$
x_{l}(v)=\min _{u \in \text { subtree }(v)} k e y(u)
$$

- Same as $x_{l}(v)$ we define $x_{r}(v)$ as the maximum key in the subtree of the node v :

$$
x_{r}(v)=\max _{u \in \text { subtree }(v)} k e y(u)
$$

- $\operatorname{depth}(v)$ is the length of the path from root to $v . \operatorname{depth}($ root $)=0$.
- height (v) is the difference between $\max (\operatorname{depth}(u))$ and $\operatorname{depth}(v)$, where $u \in \operatorname{subtree}(v)$.

2 Key points and definitions

- Greedy algorithm of finding an increasing subsequence: take first element that is greater than current, "left ladder". The expected length of the result on a random permutation is $O(\log n)$.
- BST stands for binary search tree, that is a binary rooted tree with some keys associated with every node, and the following two conditions hold:

$$
\operatorname{key}(u)<\operatorname{key}(v), \forall u, v: u \in \operatorname{subtree}(\operatorname{left}(v))
$$

and

$$
\operatorname{key}(u)>\operatorname{key}(v), \forall u, v: u \in \operatorname{subtree}(\operatorname{right}(v))
$$

- For any pair of nodes of any binary search tree v and u :
$u \in \operatorname{subtree}(v)$ if and only if $x_{l}(v) \leq k e y(u) \leq x_{r}(v)$
- For any tree and some keys stored in nodes of that tree we say that heap condition holds if for any v that is not the root:

$$
\operatorname{key}(\operatorname{parent}(v)) \geq \operatorname{key}(v)
$$

- Binary search tree of size n is balanced if it's height is $O(\operatorname{logn})$.
- Cartesian tree or treap is a balanced binary search tree, where each node is assigned some random values $y(v)$, which satisfy to the heap condition. Hereafter we will treat $y(v)$ as a random permutation.
- Cartesian tree is uniquely determined by a set of pairs $\left(x_{i}, y_{i}\right)$, such that all x_{i} are pairwise distinct and all y_{i} are pairwise distinct.
- Node v is an ancestor of a node u if and only if for every $w \neq v$ such that $\min (\operatorname{key}(v), \operatorname{key}(u)) \leq \operatorname{key}(w) \leq \max (\operatorname{key}(v), \operatorname{key}(u))$ it's y is smaller than the y of v, i.e. $y(v)>y(w)$.
- Linear algorithm to build Cartesian tree having a sorted pairs using stack.
- The expected depth of an i-th node (in the order of left-right traversal) is

$$
\sum_{j=0}^{j<n} \frac{1}{|j-i|+1} \leq 2 \cdot \sum_{j=1}^{j \leq n} \frac{1}{j}=O(\log n)
$$

- We can treat a Cartesian tree as an array, if we replace $x(v)$ with it's relative position on the tree. The data structure is called Implicit-key Cartesian tree.
- Persistent Cartesian tree cannot use fixed random values $y(v)$, instead, two subtrees are merge with probability proportional to their sizes.

