
A B C D E F G H I J

Long Contest Editorial
November 14, 2015

Moscow International Workshop ACM ICPC, MIPT, 2015

A B C D E F G H I J

A. Automorphism

Given a tree, count the number of its automorphisms.

A B C D E F G H I J

A. Automorphism

First, can we solve the problem for a rooted tree?

The general idea resembles the algorithm for checking rooted trees
isomorphism.
We would like to assign a number to each subtree in such a way
that subtrees are isomorphic iff their numbers are equal.
This can be done as follows: recursively assign a number to each of
the childs’ subtrees, then sort all the obtained numbers. Call the
resulting vector a profile of the subtree.
Note that different profiles correspond to non-isomorphic trees, and
vice versa.
Store a global list of different profiles, with the mapping from
profiles to unique numbers. If the current profile was not met
before, assign it a new number and remember the profile.

A B C D E F G H I J

A. Automorphism

First, can we solve the problem for a rooted tree?
The general idea resembles the algorithm for checking rooted trees
isomorphism.

We would like to assign a number to each subtree in such a way
that subtrees are isomorphic iff their numbers are equal.
This can be done as follows: recursively assign a number to each of
the childs’ subtrees, then sort all the obtained numbers. Call the
resulting vector a profile of the subtree.
Note that different profiles correspond to non-isomorphic trees, and
vice versa.
Store a global list of different profiles, with the mapping from
profiles to unique numbers. If the current profile was not met
before, assign it a new number and remember the profile.

A B C D E F G H I J

A. Automorphism

First, can we solve the problem for a rooted tree?
The general idea resembles the algorithm for checking rooted trees
isomorphism.
We would like to assign a number to each subtree in such a way
that subtrees are isomorphic iff their numbers are equal.

This can be done as follows: recursively assign a number to each of
the childs’ subtrees, then sort all the obtained numbers. Call the
resulting vector a profile of the subtree.
Note that different profiles correspond to non-isomorphic trees, and
vice versa.
Store a global list of different profiles, with the mapping from
profiles to unique numbers. If the current profile was not met
before, assign it a new number and remember the profile.

A B C D E F G H I J

A. Automorphism

First, can we solve the problem for a rooted tree?
The general idea resembles the algorithm for checking rooted trees
isomorphism.
We would like to assign a number to each subtree in such a way
that subtrees are isomorphic iff their numbers are equal.
This can be done as follows: recursively assign a number to each of
the childs’ subtrees, then sort all the obtained numbers. Call the
resulting vector a profile of the subtree.

Note that different profiles correspond to non-isomorphic trees, and
vice versa.
Store a global list of different profiles, with the mapping from
profiles to unique numbers. If the current profile was not met
before, assign it a new number and remember the profile.

A B C D E F G H I J

A. Automorphism

First, can we solve the problem for a rooted tree?
The general idea resembles the algorithm for checking rooted trees
isomorphism.
We would like to assign a number to each subtree in such a way
that subtrees are isomorphic iff their numbers are equal.
This can be done as follows: recursively assign a number to each of
the childs’ subtrees, then sort all the obtained numbers. Call the
resulting vector a profile of the subtree.
Note that different profiles correspond to non-isomorphic trees, and
vice versa.

Store a global list of different profiles, with the mapping from
profiles to unique numbers. If the current profile was not met
before, assign it a new number and remember the profile.

A B C D E F G H I J

A. Automorphism

First, can we solve the problem for a rooted tree?
The general idea resembles the algorithm for checking rooted trees
isomorphism.
We would like to assign a number to each subtree in such a way
that subtrees are isomorphic iff their numbers are equal.
This can be done as follows: recursively assign a number to each of
the childs’ subtrees, then sort all the obtained numbers. Call the
resulting vector a profile of the subtree.
Note that different profiles correspond to non-isomorphic trees, and
vice versa.
Store a global list of different profiles, with the mapping from
profiles to unique numbers. If the current profile was not met
before, assign it a new number and remember the profile.

A B C D E F G H I J

A. Automorphism

How to count the number of isomorphisms?

For a subtree with a given profile, the answer (number of
isomorphisms) is the product of answers for subtrees, multiplied by
the number of ways to permute the children.
If there are k isomorphic subtrees of some type, we multiply the
answer by k!.
Together we mapping numbers and building profiles, this algorithm
works in O(n log n).

A B C D E F G H I J

A. Automorphism

How to count the number of isomorphisms?
For a subtree with a given profile, the answer (number of
isomorphisms) is the product of answers for subtrees, multiplied by
the number of ways to permute the children.

If there are k isomorphic subtrees of some type, we multiply the
answer by k!.
Together we mapping numbers and building profiles, this algorithm
works in O(n log n).

A B C D E F G H I J

A. Automorphism

How to count the number of isomorphisms?
For a subtree with a given profile, the answer (number of
isomorphisms) is the product of answers for subtrees, multiplied by
the number of ways to permute the children.
If there are k isomorphic subtrees of some type, we multiply the
answer by k!.

Together we mapping numbers and building profiles, this algorithm
works in O(n log n).

A B C D E F G H I J

A. Automorphism

How to count the number of isomorphisms?
For a subtree with a given profile, the answer (number of
isomorphisms) is the product of answers for subtrees, multiplied by
the number of ways to permute the children.
If there are k isomorphic subtrees of some type, we multiply the
answer by k!.
Together we mapping numbers and building profiles, this algorithm
works in O(n log n).

A B C D E F G H I J

A. Automorphism

How to deal with general (unrooted) trees?

Definition
A vertex v is called a centroid of the tree if all its subtrees contain
at most n/2 vertices.

Fact
A tree may only contain a unique centroid, or a pair of adjacent
centroids.

Observation
Any automorphism maps a centroid to a centroid (possibly the
same).

A B C D E F G H I J

A. Automorphism

How to deal with general (unrooted) trees?

Definition
A vertex v is called a centroid of the tree if all its subtrees contain
at most n/2 vertices.

Fact
A tree may only contain a unique centroid, or a pair of adjacent
centroids.

Observation
Any automorphism maps a centroid to a centroid (possibly the
same).

A B C D E F G H I J

A. Automorphism

How to deal with general (unrooted) trees?

Definition
A vertex v is called a centroid of the tree if all its subtrees contain
at most n/2 vertices.

Fact
A tree may only contain a unique centroid, or a pair of adjacent
centroids.

Observation
Any automorphism maps a centroid to a centroid (possibly the
same).

A B C D E F G H I J

A. Automorphism

How to deal with general (unrooted) trees?

Definition
A vertex v is called a centroid of the tree if all its subtrees contain
at most n/2 vertices.

Fact
A tree may only contain a unique centroid, or a pair of adjacent
centroids.

Observation
Any automorphism maps a centroid to a centroid (possibly the
same).

A B C D E F G H I J

A. Automorphism

If the tree contains a unique centroid, then it is a fixed point
of any automorphism, and the problem is reduced to the
rooted tree problem.

If there are two centroids, they may stay in their places, or
swap their positions.
If their subtrees (obtained by removing the edge connecting
the centroids) are non-isomorphic, then the centroids stay in
their places, and each one is associated with the rooted tree
problem.
Otherwise, the centroids may be swapped. As their subtrees
are isomorphic, the total answer is 2x2, where x is the answer
for a subtree of a single centroid.

The complexity is still O(n log n).
Note that assigning unique numbers to non-isomorphic trees can be
done in linear time (without hashing).

A B C D E F G H I J

A. Automorphism

If the tree contains a unique centroid, then it is a fixed point
of any automorphism, and the problem is reduced to the
rooted tree problem.
If there are two centroids, they may stay in their places, or
swap their positions.

If their subtrees (obtained by removing the edge connecting
the centroids) are non-isomorphic, then the centroids stay in
their places, and each one is associated with the rooted tree
problem.
Otherwise, the centroids may be swapped. As their subtrees
are isomorphic, the total answer is 2x2, where x is the answer
for a subtree of a single centroid.

The complexity is still O(n log n).
Note that assigning unique numbers to non-isomorphic trees can be
done in linear time (without hashing).

A B C D E F G H I J

A. Automorphism

If the tree contains a unique centroid, then it is a fixed point
of any automorphism, and the problem is reduced to the
rooted tree problem.
If there are two centroids, they may stay in their places, or
swap their positions.
If their subtrees (obtained by removing the edge connecting
the centroids) are non-isomorphic, then the centroids stay in
their places, and each one is associated with the rooted tree
problem.

Otherwise, the centroids may be swapped. As their subtrees
are isomorphic, the total answer is 2x2, where x is the answer
for a subtree of a single centroid.

The complexity is still O(n log n).
Note that assigning unique numbers to non-isomorphic trees can be
done in linear time (without hashing).

A B C D E F G H I J

A. Automorphism

If the tree contains a unique centroid, then it is a fixed point
of any automorphism, and the problem is reduced to the
rooted tree problem.
If there are two centroids, they may stay in their places, or
swap their positions.
If their subtrees (obtained by removing the edge connecting
the centroids) are non-isomorphic, then the centroids stay in
their places, and each one is associated with the rooted tree
problem.
Otherwise, the centroids may be swapped. As their subtrees
are isomorphic, the total answer is 2x2, where x is the answer
for a subtree of a single centroid.

The complexity is still O(n log n).
Note that assigning unique numbers to non-isomorphic trees can be
done in linear time (without hashing).

A B C D E F G H I J

A. Automorphism

If the tree contains a unique centroid, then it is a fixed point
of any automorphism, and the problem is reduced to the
rooted tree problem.
If there are two centroids, they may stay in their places, or
swap their positions.
If their subtrees (obtained by removing the edge connecting
the centroids) are non-isomorphic, then the centroids stay in
their places, and each one is associated with the rooted tree
problem.
Otherwise, the centroids may be swapped. As their subtrees
are isomorphic, the total answer is 2x2, where x is the answer
for a subtree of a single centroid.

The complexity is still O(n log n).

Note that assigning unique numbers to non-isomorphic trees can be
done in linear time (without hashing).

A B C D E F G H I J

A. Automorphism

If the tree contains a unique centroid, then it is a fixed point
of any automorphism, and the problem is reduced to the
rooted tree problem.
If there are two centroids, they may stay in their places, or
swap their positions.
If their subtrees (obtained by removing the edge connecting
the centroids) are non-isomorphic, then the centroids stay in
their places, and each one is associated with the rooted tree
problem.
Otherwise, the centroids may be swapped. As their subtrees
are isomorphic, the total answer is 2x2, where x is the answer
for a subtree of a single centroid.

The complexity is still O(n log n).
Note that assigning unique numbers to non-isomorphic trees can be
done in linear time (without hashing).

A B C D E F G H I J

B. Laser Billiards

In a rectangle there are several vertical and horizontal beams. Ball
moves inside the rectangle, reflecting from its sides after collisions.
For several values of initial position, velocity and time interval,
count the number of different intersection moments with beams.

We can shrink the ball and expand the beams equally. After that,
we can assume that a point flies in the rectangle and collides with
vertical and horizontal strips.

A B C D E F G H I J

B. Laser Billiards

In a rectangle there are several vertical and horizontal beams. Ball
moves inside the rectangle, reflecting from its sides after collisions.
For several values of initial position, velocity and time interval,
count the number of different intersection moments with beams.
We can shrink the ball and expand the beams equally. After that,
we can assume that a point flies in the rectangle and collides with
vertical and horizontal strips.

A B C D E F G H I J

B. Laser Billiards

We have to count each intersection once, even when we collide
with two beams at one moment.

If we should have counted such moments twice, the problem would
be independent for vertical and horizontal beams collision.
The problem for one type of beams is fairly easy: for, say, vertical
beams we can use reflection principle over vertical edges to obtain a
periodical infinite sequence of strips. After that, counting reduces
to range queries on the periodical array.
However, we counted double collisions twice, and now have to
subtract them back.

A B C D E F G H I J

B. Laser Billiards

We have to count each intersection once, even when we collide
with two beams at one moment.
If we should have counted such moments twice, the problem would
be independent for vertical and horizontal beams collision.

The problem for one type of beams is fairly easy: for, say, vertical
beams we can use reflection principle over vertical edges to obtain a
periodical infinite sequence of strips. After that, counting reduces
to range queries on the periodical array.
However, we counted double collisions twice, and now have to
subtract them back.

A B C D E F G H I J

B. Laser Billiards

We have to count each intersection once, even when we collide
with two beams at one moment.
If we should have counted such moments twice, the problem would
be independent for vertical and horizontal beams collision.
The problem for one type of beams is fairly easy: for, say, vertical
beams we can use reflection principle over vertical edges to obtain a
periodical infinite sequence of strips. After that, counting reduces
to range queries on the periodical array.

However, we counted double collisions twice, and now have to
subtract them back.

A B C D E F G H I J

B. Laser Billiards

We have to count each intersection once, even when we collide
with two beams at one moment.
If we should have counted such moments twice, the problem would
be independent for vertical and horizontal beams collision.
The problem for one type of beams is fairly easy: for, say, vertical
beams we can use reflection principle over vertical edges to obtain a
periodical infinite sequence of strips. After that, counting reduces
to range queries on the periodical array.
However, we counted double collisions twice, and now have to
subtract them back.

A B C D E F G H I J

B. Laser Billiards

There are O(n +m) diagonal segments between borders of the
rectangle.

Let us count the number of double collisions on some segment.
This reduces to counting the number of pairs of vertical and
horizontal strips at offsets x and y such that x − y = d or
x + y = d depending on direction of the diagonal.
These numbers can be counted all at once using FFT for fast
polynomial multiplication.

A B C D E F G H I J

B. Laser Billiards

There are O(n +m) diagonal segments between borders of the
rectangle.
Let us count the number of double collisions on some segment.
This reduces to counting the number of pairs of vertical and
horizontal strips at offsets x and y such that x − y = d or
x + y = d depending on direction of the diagonal.

These numbers can be counted all at once using FFT for fast
polynomial multiplication.

A B C D E F G H I J

B. Laser Billiards

There are O(n +m) diagonal segments between borders of the
rectangle.
Let us count the number of double collisions on some segment.
This reduces to counting the number of pairs of vertical and
horizontal strips at offsets x and y such that x − y = d or
x + y = d depending on direction of the diagonal.
These numbers can be counted all at once using FFT for fast
polynomial multiplication.

A B C D E F G H I J

B. Laser Billiards

It suffices to count double collisions along the path.

We can count the number of segments lying on the path using the
reflection principle.
As the number of segments can be large, we should use faster
summation methods. For example, count the DP “total number of
double collisions starting at current segment and following 2k

segments forward” to sum along path of length l in O(log l) time.
It suffices to account for proper parts of start and finish segments.
This can be done using bitmasks in ∼ ((n +m)/32) time.

A B C D E F G H I J

B. Laser Billiards

It suffices to count double collisions along the path.
We can count the number of segments lying on the path using the
reflection principle.

As the number of segments can be large, we should use faster
summation methods. For example, count the DP “total number of
double collisions starting at current segment and following 2k

segments forward” to sum along path of length l in O(log l) time.
It suffices to account for proper parts of start and finish segments.
This can be done using bitmasks in ∼ ((n +m)/32) time.

A B C D E F G H I J

B. Laser Billiards

It suffices to count double collisions along the path.
We can count the number of segments lying on the path using the
reflection principle.
As the number of segments can be large, we should use faster
summation methods. For example, count the DP “total number of
double collisions starting at current segment and following 2k

segments forward” to sum along path of length l in O(log l) time.

It suffices to account for proper parts of start and finish segments.
This can be done using bitmasks in ∼ ((n +m)/32) time.

A B C D E F G H I J

B. Laser Billiards

It suffices to count double collisions along the path.
We can count the number of segments lying on the path using the
reflection principle.
As the number of segments can be large, we should use faster
summation methods. For example, count the DP “total number of
double collisions starting at current segment and following 2k

segments forward” to sum along path of length l in O(log l) time.
It suffices to account for proper parts of start and finish segments.
This can be done using bitmasks in ∼ ((n +m)/32) time.

A B C D E F G H I J

C. SmartDog

A dog and a cat are placed inside a labyrinth. On every turn cat
moves to a random adjacent cell, and a dog either hears nothing or
hears a distorted located where the cat is located. After that, dog
moves so that to minimize expected shortest path to cat (to its
knowledge). Given what dog hears, simulate dog’s movements.

A B C D E F G H I J

C. SmartDog

To simulate movement, we just have to know the probability of the
event “cat is in the cell (x , y)” for each cell of the field at any
moment.

Initially, all the probabilities are equal.
Consider a move. Let p(x , y) be the probability for the cat to be in
the cell (x , y) before the move, and p′(x , y) be the same
probability after the move happened. We would like to express p′

using values of p.

Suppose that on that current move dog heard nothing.
Consider a cell (x , y).
Then, consider all adjacent cells (let their number be d). For
each adjacent cell (x ′, y ′), add p(x , y)/d to p′(x ′, y ′); this
corresponds to the uniform choosing of direction.

A B C D E F G H I J

C. SmartDog

To simulate movement, we just have to know the probability of the
event “cat is in the cell (x , y)” for each cell of the field at any
moment.
Initially, all the probabilities are equal.

Consider a move. Let p(x , y) be the probability for the cat to be in
the cell (x , y) before the move, and p′(x , y) be the same
probability after the move happened. We would like to express p′

using values of p.

Suppose that on that current move dog heard nothing.
Consider a cell (x , y).
Then, consider all adjacent cells (let their number be d). For
each adjacent cell (x ′, y ′), add p(x , y)/d to p′(x ′, y ′); this
corresponds to the uniform choosing of direction.

A B C D E F G H I J

C. SmartDog

To simulate movement, we just have to know the probability of the
event “cat is in the cell (x , y)” for each cell of the field at any
moment.
Initially, all the probabilities are equal.
Consider a move. Let p(x , y) be the probability for the cat to be in
the cell (x , y) before the move, and p′(x , y) be the same
probability after the move happened. We would like to express p′

using values of p.

Suppose that on that current move dog heard nothing.
Consider a cell (x , y).
Then, consider all adjacent cells (let their number be d). For
each adjacent cell (x ′, y ′), add p(x , y)/d to p′(x ′, y ′); this
corresponds to the uniform choosing of direction.

A B C D E F G H I J

C. SmartDog

To simulate movement, we just have to know the probability of the
event “cat is in the cell (x , y)” for each cell of the field at any
moment.
Initially, all the probabilities are equal.
Consider a move. Let p(x , y) be the probability for the cat to be in
the cell (x , y) before the move, and p′(x , y) be the same
probability after the move happened. We would like to express p′

using values of p.

Suppose that on that current move dog heard nothing.
Consider a cell (x , y).

Then, consider all adjacent cells (let their number be d). For
each adjacent cell (x ′, y ′), add p(x , y)/d to p′(x ′, y ′); this
corresponds to the uniform choosing of direction.

A B C D E F G H I J

C. SmartDog

To simulate movement, we just have to know the probability of the
event “cat is in the cell (x , y)” for each cell of the field at any
moment.
Initially, all the probabilities are equal.
Consider a move. Let p(x , y) be the probability for the cat to be in
the cell (x , y) before the move, and p′(x , y) be the same
probability after the move happened. We would like to express p′

using values of p.

Suppose that on that current move dog heard nothing.
Consider a cell (x , y).
Then, consider all adjacent cells (let their number be d). For
each adjacent cell (x ′, y ′), add p(x , y)/d to p′(x ′, y ′); this
corresponds to the uniform choosing of direction.

A B C D E F G H I J

C. SmartDog

Suppose that the dog just heard the location (x , y), and the
current time is t. Let us thoroughly analyse the new
probabilities.

Let L(xi , yi , ti) be the event “the cat is at the position (xi , yi)
at the moment ti ”
Let H(xi , yi , ti) be the event “the dog heard noise at the
position (xi , yi) at the moment ti ”.

A B C D E F G H I J

C. SmartDog

Suppose that the dog just heard the location (x , y), and the
current time is t. Let us thoroughly analyse the new
probabilities.
Let L(xi , yi , ti) be the event “the cat is at the position (xi , yi)
at the moment ti ”

Let H(xi , yi , ti) be the event “the dog heard noise at the
position (xi , yi) at the moment ti ”.

A B C D E F G H I J

C. SmartDog

Suppose that the dog just heard the location (x , y), and the
current time is t. Let us thoroughly analyse the new
probabilities.
Let L(xi , yi , ti) be the event “the cat is at the position (xi , yi)
at the moment ti ”
Let H(xi , yi , ti) be the event “the dog heard noise at the
position (xi , yi) at the moment ti ”.

A B C D E F G H I J

C. SmartDog

For some cell (X ,Y), p′(X ,Y) should be equal to
Prob(L(X ,Y , t)|H(x , y , t),H(x1, y1, t1), . . .), where (xi , yi , ti) are
all previous events “dog heard noise”.

Prob(L(X ,Y , t)|H(x , y , t),H(x1, y1, t1), . . .) =

Prob(L(X ,Y , t),H(x , y , t),H(x1, y1, t1), . . .)

Prob(H(x , y , t),H(x1, y1, t1), . . .)

Note that denominator is the same for all cells (X ,Y), so we can
omit it and normalize the distribution later.

A B C D E F G H I J

C. SmartDog

For some cell (X ,Y), p′(X ,Y) should be equal to
Prob(L(X ,Y , t)|H(x , y , t),H(x1, y1, t1), . . .), where (xi , yi , ti) are
all previous events “dog heard noise”.

Prob(L(X ,Y , t)|H(x , y , t),H(x1, y1, t1), . . .) =

Prob(L(X ,Y , t),H(x , y , t),H(x1, y1, t1), . . .)

Prob(H(x , y , t),H(x1, y1, t1), . . .)

Note that denominator is the same for all cells (X ,Y), so we can
omit it and normalize the distribution later.

A B C D E F G H I J

C. SmartDog

For some cell (X ,Y), p′(X ,Y) should be equal to
Prob(L(X ,Y , t)|H(x , y , t),H(x1, y1, t1), . . .), where (xi , yi , ti) are
all previous events “dog heard noise”.

Prob(L(X ,Y , t)|H(x , y , t),H(x1, y1, t1), . . .) =

Prob(L(X ,Y , t),H(x , y , t),H(x1, y1, t1), . . .)

Prob(H(x , y , t),H(x1, y1, t1), . . .)

Note that denominator is the same for all cells (X ,Y), so we can
omit it and normalize the distribution later.

A B C D E F G H I J

C. SmartDog

Prob(L(X ,Y , t),H(x , y , t),H(x1, y1, t1), . . .) =

Prob(L(X ,Y , t),H(x1, y1, t1), . . .)·

Prob(H(x , y , t)|L(X ,Y , t),H(x1, y1, t1), . . .)

p(X ,Y)Prob(H(x1, y1, t1), . . .) · Prob(H(x , y , t)|L(X ,Y , t))

Again, Prob(H(x1, y1, t1), . . .) can be omitted.
Prob(H(x , y , t)|L(X ,Y , t)) is by definition
Ne−((x−X)2+(y−Y)2)/2σ2

.
To sum up, p′(X ,Y) is just p(x , y) multiplied by probability of
hearing noise at (x , y) if the cat is at (X ,Y) (which makes sense).

A B C D E F G H I J

C. SmartDog

Prob(L(X ,Y , t),H(x , y , t),H(x1, y1, t1), . . .) =

Prob(L(X ,Y , t),H(x1, y1, t1), . . .)·

Prob(H(x , y , t)|L(X ,Y , t),H(x1, y1, t1), . . .)

p(X ,Y)Prob(H(x1, y1, t1), . . .) · Prob(H(x , y , t)|L(X ,Y , t))

Again, Prob(H(x1, y1, t1), . . .) can be omitted.
Prob(H(x , y , t)|L(X ,Y , t)) is by definition
Ne−((x−X)2+(y−Y)2)/2σ2

.
To sum up, p′(X ,Y) is just p(x , y) multiplied by probability of
hearing noise at (x , y) if the cat is at (X ,Y) (which makes sense).

A B C D E F G H I J

C. SmartDog

Prob(L(X ,Y , t),H(x , y , t),H(x1, y1, t1), . . .) =

Prob(L(X ,Y , t),H(x1, y1, t1), . . .)·

Prob(H(x , y , t)|L(X ,Y , t),H(x1, y1, t1), . . .)

p(X ,Y)Prob(H(x1, y1, t1), . . .) · Prob(H(x , y , t)|L(X ,Y , t))

Again, Prob(H(x1, y1, t1), . . .) can be omitted.
Prob(H(x , y , t)|L(X ,Y , t)) is by definition
Ne−((x−X)2+(y−Y)2)/2σ2

.
To sum up, p′(X ,Y) is just p(x , y) multiplied by probability of
hearing noise at (x , y) if the cat is at (X ,Y) (which makes sense).

A B C D E F G H I J

C. SmartDog

Prob(L(X ,Y , t),H(x , y , t),H(x1, y1, t1), . . .) =

Prob(L(X ,Y , t),H(x1, y1, t1), . . .)·

Prob(H(x , y , t)|L(X ,Y , t),H(x1, y1, t1), . . .)

p(X ,Y)Prob(H(x1, y1, t1), . . .) · Prob(H(x , y , t)|L(X ,Y , t))

Again, Prob(H(x1, y1, t1), . . .) can be omitted.

Prob(H(x , y , t)|L(X ,Y , t)) is by definition
Ne−((x−X)2+(y−Y)2)/2σ2

.
To sum up, p′(X ,Y) is just p(x , y) multiplied by probability of
hearing noise at (x , y) if the cat is at (X ,Y) (which makes sense).

A B C D E F G H I J

C. SmartDog

Prob(L(X ,Y , t),H(x , y , t),H(x1, y1, t1), . . .) =

Prob(L(X ,Y , t),H(x1, y1, t1), . . .)·

Prob(H(x , y , t)|L(X ,Y , t),H(x1, y1, t1), . . .)

p(X ,Y)Prob(H(x1, y1, t1), . . .) · Prob(H(x , y , t)|L(X ,Y , t))

Again, Prob(H(x1, y1, t1), . . .) can be omitted.
Prob(H(x , y , t)|L(X ,Y , t)) is by definition
Ne−((x−X)2+(y−Y)2)/2σ2

.

To sum up, p′(X ,Y) is just p(x , y) multiplied by probability of
hearing noise at (x , y) if the cat is at (X ,Y) (which makes sense).

A B C D E F G H I J

C. SmartDog

Prob(L(X ,Y , t),H(x , y , t),H(x1, y1, t1), . . .) =

Prob(L(X ,Y , t),H(x1, y1, t1), . . .)·

Prob(H(x , y , t)|L(X ,Y , t),H(x1, y1, t1), . . .)

p(X ,Y)Prob(H(x1, y1, t1), . . .) · Prob(H(x , y , t)|L(X ,Y , t))

Again, Prob(H(x1, y1, t1), . . .) can be omitted.
Prob(H(x , y , t)|L(X ,Y , t)) is by definition
Ne−((x−X)2+(y−Y)2)/2σ2

.
To sum up, p′(X ,Y) is just p(x , y) multiplied by probability of
hearing noise at (x , y) if the cat is at (X ,Y) (which makes sense).

A B C D E F G H I J

C. SmartDog

Finally, for each option of movement calculate expected shortest
path to the cat and choose the best. Pay attention to tolerance of
comparison between probabilities.

Complexity is O(knm + (nm)3) (the latter summand for calculating
all shortest paths).

A B C D E F G H I J

C. SmartDog

Finally, for each option of movement calculate expected shortest
path to the cat and choose the best. Pay attention to tolerance of
comparison between probabilities.
Complexity is O(knm + (nm)3) (the latter summand for calculating
all shortest paths).

A B C D E F G H I J

D. Expression

Given an arithmetic expression, erase as much bracket pairs as
possible so that the expression keeps its original meaning.
More specifically, we can assume that multiplication/division has
higher priority than addition/subtraction, and addition and
multiplication are associative. Also, subtraction can be combined
with addition if it is a second operation, and similarly division can
be combined with miltiplication.
No more assumptions can be made about the operations.

A B C D E F G H I J

D. Expression

Let’s decide for each bracket pair whether we can remove it or not,
starting from the inner ones.

We will use following notation (context-free grammar):

term := a..z |(expression)
product := term|term ∗ product|term/product
expression := product|product+expression|product−expression

A B C D E F G H I J

D. Expression

Let’s decide for each bracket pair whether we can remove it or not,
starting from the inner ones.
We will use following notation (context-free grammar):

term := a..z |(expression)
product := term|term ∗ product|term/product
expression := product|product+expression|product−expression

A B C D E F G H I J

D. Expression

Consider a term t of the form (expression). We assume that all
brackets inside the term have been removed when possible.

There is a unique maximal (unextendable) product containing the
term, and unique maximal expression containing the product as an
operand of + or -.
There are several cases to consider.

If the expression inside of brackets is a letter, then the brackets
can be removed indefinitely.
If the expression inside of brackets is a product (according to
the described context-free grammar), the brackets can be
removed iff there is no division (/) immediately before the
term t.
Otherwise, the brackets can be removed if the term t is not a
proper part of the product (that is, does not take part in the
multiplication or division immediately), and also there is no −
immediately before the term t.

A B C D E F G H I J

D. Expression

Consider a term t of the form (expression). We assume that all
brackets inside the term have been removed when possible.
There is a unique maximal (unextendable) product containing the
term, and unique maximal expression containing the product as an
operand of + or -.

There are several cases to consider.

If the expression inside of brackets is a letter, then the brackets
can be removed indefinitely.
If the expression inside of brackets is a product (according to
the described context-free grammar), the brackets can be
removed iff there is no division (/) immediately before the
term t.
Otherwise, the brackets can be removed if the term t is not a
proper part of the product (that is, does not take part in the
multiplication or division immediately), and also there is no −
immediately before the term t.

A B C D E F G H I J

D. Expression

Consider a term t of the form (expression). We assume that all
brackets inside the term have been removed when possible.
There is a unique maximal (unextendable) product containing the
term, and unique maximal expression containing the product as an
operand of + or -.
There are several cases to consider.

If the expression inside of brackets is a letter, then the brackets
can be removed indefinitely.
If the expression inside of brackets is a product (according to
the described context-free grammar), the brackets can be
removed iff there is no division (/) immediately before the
term t.
Otherwise, the brackets can be removed if the term t is not a
proper part of the product (that is, does not take part in the
multiplication or division immediately), and also there is no −
immediately before the term t.

A B C D E F G H I J

D. Expression

Consider a term t of the form (expression). We assume that all
brackets inside the term have been removed when possible.
There is a unique maximal (unextendable) product containing the
term, and unique maximal expression containing the product as an
operand of + or -.
There are several cases to consider.

If the expression inside of brackets is a letter, then the brackets
can be removed indefinitely.

If the expression inside of brackets is a product (according to
the described context-free grammar), the brackets can be
removed iff there is no division (/) immediately before the
term t.
Otherwise, the brackets can be removed if the term t is not a
proper part of the product (that is, does not take part in the
multiplication or division immediately), and also there is no −
immediately before the term t.

A B C D E F G H I J

D. Expression

Consider a term t of the form (expression). We assume that all
brackets inside the term have been removed when possible.
There is a unique maximal (unextendable) product containing the
term, and unique maximal expression containing the product as an
operand of + or -.
There are several cases to consider.

If the expression inside of brackets is a letter, then the brackets
can be removed indefinitely.
If the expression inside of brackets is a product (according to
the described context-free grammar), the brackets can be
removed iff there is no division (/) immediately before the
term t.

Otherwise, the brackets can be removed if the term t is not a
proper part of the product (that is, does not take part in the
multiplication or division immediately), and also there is no −
immediately before the term t.

A B C D E F G H I J

D. Expression

Consider a term t of the form (expression). We assume that all
brackets inside the term have been removed when possible.
There is a unique maximal (unextendable) product containing the
term, and unique maximal expression containing the product as an
operand of + or -.
There are several cases to consider.

If the expression inside of brackets is a letter, then the brackets
can be removed indefinitely.
If the expression inside of brackets is a product (according to
the described context-free grammar), the brackets can be
removed iff there is no division (/) immediately before the
term t.
Otherwise, the brackets can be removed if the term t is not a
proper part of the product (that is, does not take part in the
multiplication or division immediately), and also there is no −
immediately before the term t.

A B C D E F G H I J

D. Expression

All these conditions are concerned with symbols immediately next
to the brackets, or presence of + or - inside the brackets, but not
inside inner pairs of brackets.

These can be checked easily along with parsing the expression in
linear time.

A B C D E F G H I J

D. Expression

All these conditions are concerned with symbols immediately next
to the brackets, or presence of + or - inside the brackets, but not
inside inner pairs of brackets.
These can be checked easily along with parsing the expression in
linear time.

A B C D E F G H I J

E. Paint

Paint the edges of a graph into white, blue and red in such a way
that every white edge is adjacent to a red edge. Minimize total cost
if a white edge costs 0, a blue edge costs 1, and a red edge costs 2.

A B C D E F G H I J

E. Paint

Suppose that we have chosen all the edges that will be red.

It now makes sense to paint blue only those edges which are not
adjacent to any red edge.
Note that only the set of vertices covered by red edges matters here.
For each of the 2n subsets we will count the minimal number of red
edges needed to cover this set. This can be done with a classical
subset DP, with transitions “add a single edge”.
Having computed this, for each subset count the number of blue
edges explicitly.
In total, we obtain a O(m2n) solution.

A B C D E F G H I J

E. Paint

Suppose that we have chosen all the edges that will be red.
It now makes sense to paint blue only those edges which are not
adjacent to any red edge.

Note that only the set of vertices covered by red edges matters here.
For each of the 2n subsets we will count the minimal number of red
edges needed to cover this set. This can be done with a classical
subset DP, with transitions “add a single edge”.
Having computed this, for each subset count the number of blue
edges explicitly.
In total, we obtain a O(m2n) solution.

A B C D E F G H I J

E. Paint

Suppose that we have chosen all the edges that will be red.
It now makes sense to paint blue only those edges which are not
adjacent to any red edge.
Note that only the set of vertices covered by red edges matters here.

For each of the 2n subsets we will count the minimal number of red
edges needed to cover this set. This can be done with a classical
subset DP, with transitions “add a single edge”.
Having computed this, for each subset count the number of blue
edges explicitly.
In total, we obtain a O(m2n) solution.

A B C D E F G H I J

E. Paint

Suppose that we have chosen all the edges that will be red.
It now makes sense to paint blue only those edges which are not
adjacent to any red edge.
Note that only the set of vertices covered by red edges matters here.
For each of the 2n subsets we will count the minimal number of red
edges needed to cover this set. This can be done with a classical
subset DP, with transitions “add a single edge”.

Having computed this, for each subset count the number of blue
edges explicitly.
In total, we obtain a O(m2n) solution.

A B C D E F G H I J

E. Paint

Suppose that we have chosen all the edges that will be red.
It now makes sense to paint blue only those edges which are not
adjacent to any red edge.
Note that only the set of vertices covered by red edges matters here.
For each of the 2n subsets we will count the minimal number of red
edges needed to cover this set. This can be done with a classical
subset DP, with transitions “add a single edge”.
Having computed this, for each subset count the number of blue
edges explicitly.

In total, we obtain a O(m2n) solution.

A B C D E F G H I J

E. Paint

Suppose that we have chosen all the edges that will be red.
It now makes sense to paint blue only those edges which are not
adjacent to any red edge.
Note that only the set of vertices covered by red edges matters here.
For each of the 2n subsets we will count the minimal number of red
edges needed to cover this set. This can be done with a classical
subset DP, with transitions “add a single edge”.
Having computed this, for each subset count the number of blue
edges explicitly.
In total, we obtain a O(m2n) solution.

A B C D E F G H I J

F. Parliament

Given a graph with “friend” and “enemy” edges, find the maximal
size of a subset S such that friends of elements of S are also in S ,
and no enemy of an element of S is in S . Also, count the number
of different maximal subsets.

The number of “friend” edges is at least n(n−1)
3 .

A B C D E F G H I J

F. Parliament

Given a graph with “friend” and “enemy” edges, find the maximal
size of a subset S such that friends of elements of S are also in S ,
and no enemy of an element of S is in S . Also, count the number
of different maximal subsets.
The number of “friend” edges is at least n(n−1)

3 .

A B C D E F G H I J

F. Parliament

Clearly, we can treat connected components over friend edges as
single vertices with sizes as weights.

What is the maximal number of such connected components?

Observation
Maximal number of components is achieved when all the edges are
in the single “clique” component.

The size of the clique is at least ∼ n
√

2
3 .

Thus, the maximal number of components is ∼ n(1−
√

2
3).

For n 6 250, this number does not exceed 46.

A B C D E F G H I J

F. Parliament

Clearly, we can treat connected components over friend edges as
single vertices with sizes as weights.
What is the maximal number of such connected components?

Observation
Maximal number of components is achieved when all the edges are
in the single “clique” component.

The size of the clique is at least ∼ n
√

2
3 .

Thus, the maximal number of components is ∼ n(1−
√

2
3).

For n 6 250, this number does not exceed 46.

A B C D E F G H I J

F. Parliament

Clearly, we can treat connected components over friend edges as
single vertices with sizes as weights.
What is the maximal number of such connected components?

Observation
Maximal number of components is achieved when all the edges are
in the single “clique” component.

The size of the clique is at least ∼ n
√

2
3 .

Thus, the maximal number of components is ∼ n(1−
√

2
3).

For n 6 250, this number does not exceed 46.

A B C D E F G H I J

F. Parliament

Clearly, we can treat connected components over friend edges as
single vertices with sizes as weights.
What is the maximal number of such connected components?

Observation
Maximal number of components is achieved when all the edges are
in the single “clique” component.

The size of the clique is at least ∼ n
√

2
3 .

Thus, the maximal number of components is ∼ n(1−
√

2
3).

For n 6 250, this number does not exceed 46.

A B C D E F G H I J

F. Parliament

Clearly, we can treat connected components over friend edges as
single vertices with sizes as weights.
What is the maximal number of such connected components?

Observation
Maximal number of components is achieved when all the edges are
in the single “clique” component.

The size of the clique is at least ∼ n
√

2
3 .

Thus, the maximal number of components is ∼ n(1−
√

2
3).

For n 6 250, this number does not exceed 46.

A B C D E F G H I J

F. Parliament

Clearly, we can treat connected components over friend edges as
single vertices with sizes as weights.
What is the maximal number of such connected components?

Observation
Maximal number of components is achieved when all the edges are
in the single “clique” component.

The size of the clique is at least ∼ n
√

2
3 .

Thus, the maximal number of components is ∼ n(1−
√

2
3).

For n 6 250, this number does not exceed 46.

A B C D E F G H I J

F. Parliament

After compressing components, the problem becomes basically
equal to the maximal independent set problem, but with weights.

This problem can solved in O(n2n/2) on a graph with n vertices
with a “meet-in-the-middle” approach and fairly standard subset
DP.

The total complexity is roughly O(n2
(1−

√
2
3
)/2

).

A B C D E F G H I J

F. Parliament

After compressing components, the problem becomes basically
equal to the maximal independent set problem, but with weights.
This problem can solved in O(n2n/2) on a graph with n vertices
with a “meet-in-the-middle” approach and fairly standard subset
DP.

The total complexity is roughly O(n2
(1−

√
2
3
)/2

).

A B C D E F G H I J

F. Parliament

After compressing components, the problem becomes basically
equal to the maximal independent set problem, but with weights.
This problem can solved in O(n2n/2) on a graph with n vertices
with a “meet-in-the-middle” approach and fairly standard subset
DP.

The total complexity is roughly O(n2
(1−

√
2
3
)/2

).

A B C D E F G H I J

G. Sequences

We are given an array of n numbers. Consider all p-element
decreasing sequences and order them lexicographically by sequences
of indices. Find k-th lexicographically p-element decreasing
sequence for several values of k .

A B C D E F G H I J

G. Sequences

First, we will count Aq,i the number of q-element decreasing
sequences starting at the index i for all indices, and all values of q
from 1 to p.

This is a standard application of Fenwick tree (BIT) or segment
tree.
Given this information, we can find k-th (0-based, for convenience)
decreasing sequence as follows:

Determine the first element by moving from left to right and
comparing k with Ap,i . If current Ap,i > k , then i is the index
of the first element, otherwise subtract Ap,i from k and
continue.
Determine all other elements similarly, but skip elements that
are not less than the previous chosen element.

This allows to answer one query in O(n) time, which is too much
to process all queries.

A B C D E F G H I J

G. Sequences

First, we will count Aq,i the number of q-element decreasing
sequences starting at the index i for all indices, and all values of q
from 1 to p.
This is a standard application of Fenwick tree (BIT) or segment
tree.

Given this information, we can find k-th (0-based, for convenience)
decreasing sequence as follows:

Determine the first element by moving from left to right and
comparing k with Ap,i . If current Ap,i > k , then i is the index
of the first element, otherwise subtract Ap,i from k and
continue.
Determine all other elements similarly, but skip elements that
are not less than the previous chosen element.

This allows to answer one query in O(n) time, which is too much
to process all queries.

A B C D E F G H I J

G. Sequences

First, we will count Aq,i the number of q-element decreasing
sequences starting at the index i for all indices, and all values of q
from 1 to p.
This is a standard application of Fenwick tree (BIT) or segment
tree.
Given this information, we can find k-th (0-based, for convenience)
decreasing sequence as follows:

Determine the first element by moving from left to right and
comparing k with Ap,i . If current Ap,i > k , then i is the index
of the first element, otherwise subtract Ap,i from k and
continue.
Determine all other elements similarly, but skip elements that
are not less than the previous chosen element.

This allows to answer one query in O(n) time, which is too much
to process all queries.

A B C D E F G H I J

G. Sequences

First, we will count Aq,i the number of q-element decreasing
sequences starting at the index i for all indices, and all values of q
from 1 to p.
This is a standard application of Fenwick tree (BIT) or segment
tree.
Given this information, we can find k-th (0-based, for convenience)
decreasing sequence as follows:

Determine the first element by moving from left to right and
comparing k with Ap,i . If current Ap,i > k , then i is the index
of the first element, otherwise subtract Ap,i from k and
continue.

Determine all other elements similarly, but skip elements that
are not less than the previous chosen element.

This allows to answer one query in O(n) time, which is too much
to process all queries.

A B C D E F G H I J

G. Sequences

First, we will count Aq,i the number of q-element decreasing
sequences starting at the index i for all indices, and all values of q
from 1 to p.
This is a standard application of Fenwick tree (BIT) or segment
tree.
Given this information, we can find k-th (0-based, for convenience)
decreasing sequence as follows:

Determine the first element by moving from left to right and
comparing k with Ap,i . If current Ap,i > k , then i is the index
of the first element, otherwise subtract Ap,i from k and
continue.
Determine all other elements similarly, but skip elements that
are not less than the previous chosen element.

This allows to answer one query in O(n) time, which is too much
to process all queries.

A B C D E F G H I J

G. Sequences

First, we will count Aq,i the number of q-element decreasing
sequences starting at the index i for all indices, and all values of q
from 1 to p.
This is a standard application of Fenwick tree (BIT) or segment
tree.
Given this information, we can find k-th (0-based, for convenience)
decreasing sequence as follows:

Determine the first element by moving from left to right and
comparing k with Ap,i . If current Ap,i > k , then i is the index
of the first element, otherwise subtract Ap,i from k and
continue.
Determine all other elements similarly, but skip elements that
are not less than the previous chosen element.

This allows to answer one query in O(n) time, which is too much
to process all queries.

A B C D E F G H I J

G. Sequences

We will solve the problem off-line and answer all queries
simultaneously.

Note that determining the first element can be done in O(log n)
with binary search on the prefix sum array.
However, it doesn’t work for latter elements since there’s no easy
way to ignore greater elements.
Consider all q from p to 1. We will determine q-th elements of all
sequence at once:

Sort all events “find the next element of j-th sequence with
previous element ai ” and “add element ai into consideration”
so that for each query with element ai only larger elements are
added into BIT.
Process queries with binary search similar to finding the first
element (see above).

A B C D E F G H I J

G. Sequences

We will solve the problem off-line and answer all queries
simultaneously.
Note that determining the first element can be done in O(log n)
with binary search on the prefix sum array.

However, it doesn’t work for latter elements since there’s no easy
way to ignore greater elements.
Consider all q from p to 1. We will determine q-th elements of all
sequence at once:

Sort all events “find the next element of j-th sequence with
previous element ai ” and “add element ai into consideration”
so that for each query with element ai only larger elements are
added into BIT.
Process queries with binary search similar to finding the first
element (see above).

A B C D E F G H I J

G. Sequences

We will solve the problem off-line and answer all queries
simultaneously.
Note that determining the first element can be done in O(log n)
with binary search on the prefix sum array.
However, it doesn’t work for latter elements since there’s no easy
way to ignore greater elements.

Consider all q from p to 1. We will determine q-th elements of all
sequence at once:

Sort all events “find the next element of j-th sequence with
previous element ai ” and “add element ai into consideration”
so that for each query with element ai only larger elements are
added into BIT.
Process queries with binary search similar to finding the first
element (see above).

A B C D E F G H I J

G. Sequences

We will solve the problem off-line and answer all queries
simultaneously.
Note that determining the first element can be done in O(log n)
with binary search on the prefix sum array.
However, it doesn’t work for latter elements since there’s no easy
way to ignore greater elements.
Consider all q from p to 1. We will determine q-th elements of all
sequence at once:

Sort all events “find the next element of j-th sequence with
previous element ai ” and “add element ai into consideration”
so that for each query with element ai only larger elements are
added into BIT.
Process queries with binary search similar to finding the first
element (see above).

A B C D E F G H I J

G. Sequences

We will solve the problem off-line and answer all queries
simultaneously.
Note that determining the first element can be done in O(log n)
with binary search on the prefix sum array.
However, it doesn’t work for latter elements since there’s no easy
way to ignore greater elements.
Consider all q from p to 1. We will determine q-th elements of all
sequence at once:

Sort all events “find the next element of j-th sequence with
previous element ai ” and “add element ai into consideration”
so that for each query with element ai only larger elements are
added into BIT.

Process queries with binary search similar to finding the first
element (see above).

A B C D E F G H I J

G. Sequences

We will solve the problem off-line and answer all queries
simultaneously.
Note that determining the first element can be done in O(log n)
with binary search on the prefix sum array.
However, it doesn’t work for latter elements since there’s no easy
way to ignore greater elements.
Consider all q from p to 1. We will determine q-th elements of all
sequence at once:

Sort all events “find the next element of j-th sequence with
previous element ai ” and “add element ai into consideration”
so that for each query with element ai only larger elements are
added into BIT.
Process queries with binary search similar to finding the first
element (see above).

A B C D E F G H I J

G. Sequences

This algorithm will answer all queries in O(np log n + qp log2 n).

This can be further optimized to O((n + q)p log n) using tree
descent instead of binary search with queries (note that both
segment tree and BIT approach can be optimized this way).

A B C D E F G H I J

G. Sequences

This algorithm will answer all queries in O(np log n + qp log2 n).
This can be further optimized to O((n + q)p log n) using tree
descent instead of binary search with queries (note that both
segment tree and BIT approach can be optimized this way).

A B C D E F G H I J

H. Squares

Given a set of points in the plane, count different squares with
vertices in given points and sides aligned with coordinate axes.

A B C D E F G H I J

H. Squares

Iterate over xl — lowest x of vertices of the square. We will count
the number of squares with fixed xl .

Actual method of counting depends on number of given points with
x = xl .

If there are few (say, at most k) points with x = xl , we will try
all possible pairs of them as left-top and left-bottom vertices.
If these points are (xl , yl) and (xl , yr), then the side length of
the square is equal to yr − yl , and other two poitns should be
(xl + yr − yl , yl) and (xl + yr − yl , yr).
We can check if these two points exist in O(log n) with binary
search or std::set-like data structure.
Complexity for each particular x is O(k2 log n), for a total
complexity of O(nk log n), since sum of all k ’s doesn’t exceed
n.

A B C D E F G H I J

H. Squares

Iterate over xl — lowest x of vertices of the square. We will count
the number of squares with fixed xl .
Actual method of counting depends on number of given points with
x = xl .

If there are few (say, at most k) points with x = xl , we will try
all possible pairs of them as left-top and left-bottom vertices.

If these points are (xl , yl) and (xl , yr), then the side length of
the square is equal to yr − yl , and other two poitns should be
(xl + yr − yl , yl) and (xl + yr − yl , yr).
We can check if these two points exist in O(log n) with binary
search or std::set-like data structure.
Complexity for each particular x is O(k2 log n), for a total
complexity of O(nk log n), since sum of all k ’s doesn’t exceed
n.

A B C D E F G H I J

H. Squares

Iterate over xl — lowest x of vertices of the square. We will count
the number of squares with fixed xl .
Actual method of counting depends on number of given points with
x = xl .

If there are few (say, at most k) points with x = xl , we will try
all possible pairs of them as left-top and left-bottom vertices.
If these points are (xl , yl) and (xl , yr), then the side length of
the square is equal to yr − yl , and other two poitns should be
(xl + yr − yl , yl) and (xl + yr − yl , yr).

We can check if these two points exist in O(log n) with binary
search or std::set-like data structure.
Complexity for each particular x is O(k2 log n), for a total
complexity of O(nk log n), since sum of all k ’s doesn’t exceed
n.

A B C D E F G H I J

H. Squares

Iterate over xl — lowest x of vertices of the square. We will count
the number of squares with fixed xl .
Actual method of counting depends on number of given points with
x = xl .

If there are few (say, at most k) points with x = xl , we will try
all possible pairs of them as left-top and left-bottom vertices.
If these points are (xl , yl) and (xl , yr), then the side length of
the square is equal to yr − yl , and other two poitns should be
(xl + yr − yl , yl) and (xl + yr − yl , yr).
We can check if these two points exist in O(log n) with binary
search or std::set-like data structure.

Complexity for each particular x is O(k2 log n), for a total
complexity of O(nk log n), since sum of all k ’s doesn’t exceed
n.

A B C D E F G H I J

H. Squares

Iterate over xl — lowest x of vertices of the square. We will count
the number of squares with fixed xl .
Actual method of counting depends on number of given points with
x = xl .

If there are few (say, at most k) points with x = xl , we will try
all possible pairs of them as left-top and left-bottom vertices.
If these points are (xl , yl) and (xl , yr), then the side length of
the square is equal to yr − yl , and other two poitns should be
(xl + yr − yl , yl) and (xl + yr − yl , yr).
We can check if these two points exist in O(log n) with binary
search or std::set-like data structure.
Complexity for each particular x is O(k2 log n), for a total
complexity of O(nk log n), since sum of all k ’s doesn’t exceed
n.

A B C D E F G H I J

H. Squares

If there are more than k points, we will choose a different
strategy. If we choose the right-top point (xr , yr) along with
xl , all other points are determined unambigiously. Check if
they exist in a similar matter.

The complexity is O(nk n log n), since there are at most n
k xl ’s

with more than k points.

Choosing k ∼
√
n, we obtain the solution with total complexity

O(n
√
n log n).

A B C D E F G H I J

H. Squares

If there are more than k points, we will choose a different
strategy. If we choose the right-top point (xr , yr) along with
xl , all other points are determined unambigiously. Check if
they exist in a similar matter.
The complexity is O(nk n log n), since there are at most n

k xl ’s
with more than k points.

Choosing k ∼
√
n, we obtain the solution with total complexity

O(n
√
n log n).

A B C D E F G H I J

H. Squares

If there are more than k points, we will choose a different
strategy. If we choose the right-top point (xr , yr) along with
xl , all other points are determined unambigiously. Check if
they exist in a similar matter.
The complexity is O(nk n log n), since there are at most n

k xl ’s
with more than k points.

Choosing k ∼
√
n, we obtain the solution with total complexity

O(n
√
n log n).

A B C D E F G H I J

I. Tables

We are given k permutations pi ,j of n elements. Construct a
permutation q on n elements such that

k∑
i=1

n∑
j=1

min(|p′i ,j − q′j |, 8)

is minimized, where p′i and q′ are inverse permutations of p′i and q′.

A B C D E F G H I J

I. Tables

This can be viewed as an assignment problem: assign elements of q′

with distinct numbers so that to minimize total penalty.

Of course, general algorithms of solving assignment problem (such
as Hungarian algorithm or max-flow min-cost) are inapplicable here,
since the number of vertices and edges is too large.
We can, however, reduce the number of edges if we notice that for
each position x there are only a few numbers that yield penalty less
than 8k , namely that number within 8 of any pi ,x .
Thus we obtain a graph with O(n) vertices and edges. Still,
majority of min-cost max-flow algorithms will time out.
However, this problem can be reduced to regular max-flow with
clever network construction.
As the network is bipartite, we can use Dinic algorithm to achieve
O(nk

√
n) complexity (however, the constant factor is large as the

number of edges is roughly 16kn).

A B C D E F G H I J

I. Tables

This can be viewed as an assignment problem: assign elements of q′

with distinct numbers so that to minimize total penalty.
Of course, general algorithms of solving assignment problem (such
as Hungarian algorithm or max-flow min-cost) are inapplicable here,
since the number of vertices and edges is too large.

We can, however, reduce the number of edges if we notice that for
each position x there are only a few numbers that yield penalty less
than 8k , namely that number within 8 of any pi ,x .
Thus we obtain a graph with O(n) vertices and edges. Still,
majority of min-cost max-flow algorithms will time out.
However, this problem can be reduced to regular max-flow with
clever network construction.
As the network is bipartite, we can use Dinic algorithm to achieve
O(nk

√
n) complexity (however, the constant factor is large as the

number of edges is roughly 16kn).

A B C D E F G H I J

I. Tables

This can be viewed as an assignment problem: assign elements of q′

with distinct numbers so that to minimize total penalty.
Of course, general algorithms of solving assignment problem (such
as Hungarian algorithm or max-flow min-cost) are inapplicable here,
since the number of vertices and edges is too large.
We can, however, reduce the number of edges if we notice that for
each position x there are only a few numbers that yield penalty less
than 8k , namely that number within 8 of any pi ,x .

Thus we obtain a graph with O(n) vertices and edges. Still,
majority of min-cost max-flow algorithms will time out.
However, this problem can be reduced to regular max-flow with
clever network construction.
As the network is bipartite, we can use Dinic algorithm to achieve
O(nk

√
n) complexity (however, the constant factor is large as the

number of edges is roughly 16kn).

A B C D E F G H I J

I. Tables

This can be viewed as an assignment problem: assign elements of q′

with distinct numbers so that to minimize total penalty.
Of course, general algorithms of solving assignment problem (such
as Hungarian algorithm or max-flow min-cost) are inapplicable here,
since the number of vertices and edges is too large.
We can, however, reduce the number of edges if we notice that for
each position x there are only a few numbers that yield penalty less
than 8k , namely that number within 8 of any pi ,x .
Thus we obtain a graph with O(n) vertices and edges. Still,
majority of min-cost max-flow algorithms will time out.

However, this problem can be reduced to regular max-flow with
clever network construction.
As the network is bipartite, we can use Dinic algorithm to achieve
O(nk

√
n) complexity (however, the constant factor is large as the

number of edges is roughly 16kn).

A B C D E F G H I J

I. Tables

This can be viewed as an assignment problem: assign elements of q′

with distinct numbers so that to minimize total penalty.
Of course, general algorithms of solving assignment problem (such
as Hungarian algorithm or max-flow min-cost) are inapplicable here,
since the number of vertices and edges is too large.
We can, however, reduce the number of edges if we notice that for
each position x there are only a few numbers that yield penalty less
than 8k , namely that number within 8 of any pi ,x .
Thus we obtain a graph with O(n) vertices and edges. Still,
majority of min-cost max-flow algorithms will time out.
However, this problem can be reduced to regular max-flow with
clever network construction.

As the network is bipartite, we can use Dinic algorithm to achieve
O(nk

√
n) complexity (however, the constant factor is large as the

number of edges is roughly 16kn).

A B C D E F G H I J

I. Tables

This can be viewed as an assignment problem: assign elements of q′

with distinct numbers so that to minimize total penalty.
Of course, general algorithms of solving assignment problem (such
as Hungarian algorithm or max-flow min-cost) are inapplicable here,
since the number of vertices and edges is too large.
We can, however, reduce the number of edges if we notice that for
each position x there are only a few numbers that yield penalty less
than 8k , namely that number within 8 of any pi ,x .
Thus we obtain a graph with O(n) vertices and edges. Still,
majority of min-cost max-flow algorithms will time out.
However, this problem can be reduced to regular max-flow with
clever network construction.
As the network is bipartite, we can use Dinic algorithm to achieve
O(nk

√
n) complexity (however, the constant factor is large as the

number of edges is roughly 16kn).

A B C D E F G H I J

J. Triangle

Count the number of integer points with non-negative coordinates
such that ax + by 6 c for integer a, b, c .

A B C D E F G H I J

J. Triangle

One possible approach is to apply Euclidean-like algorithm.

We assume that GCD(a, b) = 1, otherwise we can divide A, B and
C by GCD(A,B) (with rounding down). Also assume that A 6 B
and C > 0.

Consider region ax + by 6 c , x , y > 0.

A B C D E F G H I J

J. Triangle

One possible approach is to apply Euclidean-like algorithm.
We assume that GCD(a, b) = 1, otherwise we can divide A, B and
C by GCD(A,B) (with rounding down). Also assume that A 6 B
and C > 0.

Consider region ax + by 6 c , x , y > 0.

A B C D E F G H I J

J. Triangle

One possible approach is to apply Euclidean-like algorithm.
We assume that GCD(a, b) = 1, otherwise we can divide A, B and
C by GCD(A,B) (with rounding down). Also assume that A 6 B
and C > 0.

Consider region ax + by 6 c , x , y > 0.

A B C D E F G H I J

J. Triangle

(x0, y0)

Denote y0 = bCB c, x0 = b
C−By0

A c. Point (x0, y0) is the rightmost of
the top points inside the region.

Let k = bBA c. The orthogonal trapezoid with top-right point
(x0, y0) and right side along the vector (k ,−1) is inside the region.

A B C D E F G H I J

J. Triangle

(x0, y0)

Denote y0 = bCB c, x0 = b
C−By0

A c. Point (x0, y0) is the rightmost of
the top points inside the region.
Let k = bBA c. The orthogonal trapezoid with top-right point
(x0, y0) and right side along the vector (k ,−1) is inside the region.

A B C D E F G H I J

J. Triangle

Apply coordinate tranformation x → x − k · (y0 − y)− x0 − 1. This
transformation takes the points inside the trapezoid to points with
negative x , the number of such points can be counted explicitly.

The rest is a region a′x + b′y 6 c ′, where b′ = b, a′ = b − ka.
Count the number of points in this region recursively.

A B C D E F G H I J

J. Triangle

Apply coordinate tranformation x → x − k · (y0 − y)− x0 − 1. This
transformation takes the points inside the trapezoid to points with
negative x , the number of such points can be counted explicitly.
The rest is a region a′x + b′y 6 c ′, where b′ = b, a′ = b − ka.
Count the number of points in this region recursively.

A B C D E F G H I J

J. Triangle

Since we’re basically applying Euclid’s algorithm to A and B , the
number of iterations, and thus the total complexity will be
O(log(a+ b)).

