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A. Too Rich

The problem regarded representing P dollars given a certain
amount of 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000 and 2000-dollar
coins (or banknotes), while maximizing total number of coins used.

Observation
Denote T total amount of dollars we have. Obtaining P dollars
using the most number of coins is the same as taking T − P using
the least number of coins and leaving them out. In the following we
discuss the problem of representing S using minimal amount of
coins.
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A. Too Rich

Example (A simpler case)

Consider a set of denominations d1 < . . . < dk such that every

denomination divides the previous one: di+1
...di for all i ∈ [1; k − 1].

Can we come up with an easy solution for the same problem?

Greedy algorithm for the simpler case
In this case a greedy algorithm works: take maximal amount of
dk -dollar coins such that the sum does not exceed S , then take
maximal amount of dk−1-dollar coins, and so on. If the total
amount of money taken this way is S , then the representation is
minimal, otherwise no representation is possible.
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Proof for the greedy algorithm
Suppose that c1d1 + . . .+ cjdj > dj+1 for some integer
non-negative cj . Then we can choose integer non-negative c ′j such
that c ′j 6 cj and c ′1d1 + . . .+ c ′jdj = dj+1. This can be done by
induction: take maximal possible amount of dj -dollar coins, and
represent the rest using first j − 1 denominations (the rest amount
is divisible by dj).
Now, consider any representation of P = c1d1 + . . .+ ckdk . If ck is
not maximal possible, choose a subset of smaller coins with sum dk
and replace them with a single coin; repeat until the sum of smaller
coins becomes less than dk . So on for smaller coins.
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A. Too Rich

Example (Choose a subset with sum of exactly 32)

1 1 1 1 1

2 2

4 4

8 8

32
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Example (Choose a subset with sum of exactly 32)
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Example (Choose a subset with sum of exactly 32)

1

32 = 8 + 8 +

4 + 4 +

2 + 2 +

1 + 1 +

1 + 1



A B C D E F G H I J K L M

A. Too Rich

In the actual problem the divisibility condition does not hold: 20
does not divide 50, and 200 does not divide 500.

However, the greedy approach can be slightly modified to work
here. Suppose that on some step of the greedy algorithm the
maximal number of dj -dollar coins that we can take is X . Then,
there is a minimal representation such that the number X ′ of
dj -dollar coins we take is at least X − 1, because if X ′ is at most
X − 2, we can always replace a subset of smaller coins with a total
amount of 2dj with two dj -dollar coins; the existence of this subset
if proved similarily to greedy solution analysis.
Thus, the algorithm that recursively tries X and X − 1 for the
number of largest coins will always give an optimal answer. Without
any optimizations this performs ∼ 29 operations per test, which
works fast enough.
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B. Count a × b

Let f (n) be the number of pairs 0 6 a, b < n such ab is not
divisible by n, and g(n) =

∑
d |n f (d). Find g(n).
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B. Count a × b

Let’s start with f (n). f (n) = n2 − h(n), where h(n) is the number

of pairs 0 6 a, b < n such that ab
...n.

Factorize n: n = pα1
1 . . . pαk

k . Chinese remainder theorem implies
that h(n) is multiplicative: h(n) = h(pα1

1 ) . . . h(pαk
k ).

Find h(pα). For 0 6 a < pα let d(a) be the maximal power of p
dividing a (set d(0) = α by definition). For any given a and b:

ab
...pα ⇐⇒ d(a) + d(b) > α.

For any 0 6 k 6 α, the number of a’s such that d(a) > k is
exactly pα−k . Thus, we obtain the formula:

h(pα) =
α−1∑
k=0

((pα−k − pα−k−1)pk) + pα = αpα − (α− 1)pα−1.
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B. Count a × b

Now, g(n) =
∑
d |n

f (n) =
∑
d |n

d2 −
∑
d |n

h(d) = s2(n)− H(n).

Let n = pα1
1 . . . pαk

k . Then

s2(n) =
k∏

i=1

αi∑
j=0

p2ji .

Since h(n) is multiplicative, H(n) is multiplicative too:

H(n) =
k∏

i=1

αi∑
j=0

h(pji ) =
k∏

i=1

αip
αi
i = n

k∏
i=1

αi .

Both s2(n) and H(n) can be computed easily given factorization of
n. It can be found straghtforwardly in O(

√
n), with posslble

speed-up to O(
√
n/ log n) using precomputed prime tables up to√

n.
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C. Play a game

We are given a string s and a set of forbidden strings A. Two
players play a game: if at the beginning of one’s turn the current
string is empty or belongs to A, the player loses immediately,
otherwise, he can erase a symbol either from the beginning of from
the end of the string. Find winning player for several substrings of s
as starting strings.
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C. Play a game

If the string s were small, the following simple O(n2) solution
would suffice.

Denote wl ,r the outcome of the game if the game is
played on the substring with positions s[l ; r). Values of wl ,r are
deteremined easily using DP:

if l = r (empty substring), or substring s[l ; r) belongs to A,
then wl ,r = L (forced lose)
otherwise, wl ,r = W if one of wl+1,r or wl ,r−1 is L, otherwise,
wl ,r = L.



A B C D E F G H I J K L M

C. Play a game

If the string s were small, the following simple O(n2) solution
would suffice. Denote wl ,r the outcome of the game if the game is
played on the substring with positions s[l ; r). Values of wl ,r are
deteremined easily using DP:

if l = r (empty substring), or substring s[l ; r) belongs to A,
then wl ,r = L (forced lose)
otherwise, wl ,r = W if one of wl+1,r or wl ,r−1 is L, otherwise,
wl ,r = L.



A B C D E F G H I J K L M

C. Play a game

If the string s were small, the following simple O(n2) solution
would suffice. Denote wl ,r the outcome of the game if the game is
played on the substring with positions s[l ; r). Values of wl ,r are
deteremined easily using DP:

if l = r (empty substring), or substring s[l ; r) belongs to A,
then wl ,r = L (forced lose)

otherwise, wl ,r = W if one of wl+1,r or wl ,r−1 is L, otherwise,
wl ,r = L.



A B C D E F G H I J K L M

C. Play a game

If the string s were small, the following simple O(n2) solution
would suffice. Denote wl ,r the outcome of the game if the game is
played on the substring with positions s[l ; r). Values of wl ,r are
deteremined easily using DP:

if l = r (empty substring), or substring s[l ; r) belongs to A,
then wl ,r = L (forced lose)
otherwise, wl ,r = W if one of wl+1,r or wl ,r−1 is L, otherwise,
wl ,r = L.



A B C D E F G H I J K L M

C. Play a game

Example

Let s = abacaba, A = {b, bac , cab}
The table of wl ,r looks as follows:
l\r 0 1 2 3 4 5 6 7
0 L
1 L
2 L
3 L
4 L
5 L
6 L
7 L
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C. Play a game
l\r 0 1 2 3 4 5 6 7
0 L W W L W L W L
1 L L W L W L W
2 L W L W W L
3 L W L L W
4 L W W L
5 L L W
6 L W
7 L

We can notice that wl ,r is almost always equal to wl+1,r−1. The
exceptions are:

1 Forced lose because the substring is forbidden (e.g. [1; 2),
[3; 6))

2 Win because wl+1,r or wl ,r−1 is a forced lose (e.g. [1; 3), [1, 5))
3 Lose because wl+2,r and wl ,r−2 are loses (e.g. [1; 6))

It can easily be shown that in all other cases wl ,r is indeed equal to
wl+1,r−1.
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C. Play a game

Knowing that, we will do the following: store two adjacent
diagonals of the table, and gradually move them to the up and to
the right while processing all the cases the elements change and
answering queries off-line. We assume that we know all occurences
of elements of A as substrings of s.

For each query and each occurence store the index of diagonal it is
concerned.

When answering a query, simply access the diagonal’s element
(we assume that is has been maintained correctly)
When processing an occurence, change the element of the
diagonal to L, and the elements immediately to the up and to
the right to W
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C. Play a game

It suffices to maintain the third condition (wl+2,r = wl ,r−2 = L).
We cannot scan the diagonals and find these situations explicitly.

However, we can notice that these situations arise only as a result
of a forced lose in the diagonal which is filled with W by default.
Call a position wl ,r interesting if wl+2,r or wl ,r−2 was forcedly
changed from W to L. We will maintain a list of interesting
positions in each diagonal.

Every time we make a forced lose (including the condition 3),
we put wl−2,r and wl ,r+2 into the list of interesting positions.
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list of interesting positions and make forced loses if needed.

Let T be the total number of occurences of elements of A as
substrings of s. It can be shown that the number of times situation
3 arises is O(T ). Therefore, the total number of events occuring
during the “sweep-line diagonal” process is O(T ), and its time
complexity is O(T ).



A B C D E F G H I J K L M

C. Play a game

It suffices to maintain the third condition (wl+2,r = wl ,r−2 = L).
We cannot scan the diagonals and find these situations explicitly.
However, we can notice that these situations arise only as a result
of a forced lose in the diagonal which is filled with W by default.

Call a position wl ,r interesting if wl+2,r or wl ,r−2 was forcedly
changed from W to L. We will maintain a list of interesting
positions in each diagonal.

Every time we make a forced lose (including the condition 3),
we put wl−2,r and wl ,r+2 into the list of interesting positions.
Before answering queries for the current diagonal, we scan the
list of interesting positions and make forced loses if needed.

Let T be the total number of occurences of elements of A as
substrings of s. It can be shown that the number of times situation
3 arises is O(T ). Therefore, the total number of events occuring
during the “sweep-line diagonal” process is O(T ), and its time
complexity is O(T ).



A B C D E F G H I J K L M

C. Play a game

It suffices to maintain the third condition (wl+2,r = wl ,r−2 = L).
We cannot scan the diagonals and find these situations explicitly.
However, we can notice that these situations arise only as a result
of a forced lose in the diagonal which is filled with W by default.
Call a position wl ,r interesting if wl+2,r or wl ,r−2 was forcedly
changed from W to L. We will maintain a list of interesting
positions in each diagonal.

Every time we make a forced lose (including the condition 3),
we put wl−2,r and wl ,r+2 into the list of interesting positions.
Before answering queries for the current diagonal, we scan the
list of interesting positions and make forced loses if needed.

Let T be the total number of occurences of elements of A as
substrings of s. It can be shown that the number of times situation
3 arises is O(T ). Therefore, the total number of events occuring
during the “sweep-line diagonal” process is O(T ), and its time
complexity is O(T ).



A B C D E F G H I J K L M

C. Play a game

It suffices to maintain the third condition (wl+2,r = wl ,r−2 = L).
We cannot scan the diagonals and find these situations explicitly.
However, we can notice that these situations arise only as a result
of a forced lose in the diagonal which is filled with W by default.
Call a position wl ,r interesting if wl+2,r or wl ,r−2 was forcedly
changed from W to L. We will maintain a list of interesting
positions in each diagonal.

Every time we make a forced lose (including the condition 3),
we put wl−2,r and wl ,r+2 into the list of interesting positions.

Before answering queries for the current diagonal, we scan the
list of interesting positions and make forced loses if needed.

Let T be the total number of occurences of elements of A as
substrings of s. It can be shown that the number of times situation
3 arises is O(T ). Therefore, the total number of events occuring
during the “sweep-line diagonal” process is O(T ), and its time
complexity is O(T ).



A B C D E F G H I J K L M

C. Play a game

It suffices to maintain the third condition (wl+2,r = wl ,r−2 = L).
We cannot scan the diagonals and find these situations explicitly.
However, we can notice that these situations arise only as a result
of a forced lose in the diagonal which is filled with W by default.
Call a position wl ,r interesting if wl+2,r or wl ,r−2 was forcedly
changed from W to L. We will maintain a list of interesting
positions in each diagonal.

Every time we make a forced lose (including the condition 3),
we put wl−2,r and wl ,r+2 into the list of interesting positions.
Before answering queries for the current diagonal, we scan the
list of interesting positions and make forced loses if needed.

Let T be the total number of occurences of elements of A as
substrings of s. It can be shown that the number of times situation
3 arises is O(T ). Therefore, the total number of events occuring
during the “sweep-line diagonal” process is O(T ), and its time
complexity is O(T ).



A B C D E F G H I J K L M

C. Play a game

It suffices to maintain the third condition (wl+2,r = wl ,r−2 = L).
We cannot scan the diagonals and find these situations explicitly.
However, we can notice that these situations arise only as a result
of a forced lose in the diagonal which is filled with W by default.
Call a position wl ,r interesting if wl+2,r or wl ,r−2 was forcedly
changed from W to L. We will maintain a list of interesting
positions in each diagonal.

Every time we make a forced lose (including the condition 3),
we put wl−2,r and wl ,r+2 into the list of interesting positions.
Before answering queries for the current diagonal, we scan the
list of interesting positions and make forced loses if needed.

Let T be the total number of occurences of elements of A as
substrings of s. It can be shown that the number of times situation
3 arises is O(T ).

Therefore, the total number of events occuring
during the “sweep-line diagonal” process is O(T ), and its time
complexity is O(T ).



A B C D E F G H I J K L M

C. Play a game

It suffices to maintain the third condition (wl+2,r = wl ,r−2 = L).
We cannot scan the diagonals and find these situations explicitly.
However, we can notice that these situations arise only as a result
of a forced lose in the diagonal which is filled with W by default.
Call a position wl ,r interesting if wl+2,r or wl ,r−2 was forcedly
changed from W to L. We will maintain a list of interesting
positions in each diagonal.

Every time we make a forced lose (including the condition 3),
we put wl−2,r and wl ,r+2 into the list of interesting positions.
Before answering queries for the current diagonal, we scan the
list of interesting positions and make forced loses if needed.

Let T be the total number of occurences of elements of A as
substrings of s. It can be shown that the number of times situation
3 arises is O(T ). Therefore, the total number of events occuring
during the “sweep-line diagonal” process is O(T ), and its time
complexity is O(T ).



A B C D E F G H I J K L M

C. Play a game

Let all elements of A be unique. Denote L =
∑

ai∈A |ai |.
We use Aho-Corasick to find all occurences in time O(n + L+ T ).

Therefore, it suffices to estimate T .

Statement

T = O(n
√
L).

Proof
The total number of occurences of strings of length l does not
exceed n. Thus, T does not exceed n×(number of different lengths
of elements of A).
The number of different lengths is maximal if lengths are 1, 2, . . . ,
and is O(

√
L), which implies the statement.

This concludes the analysis of the problem. The resulting solution
has complexity O(L+ n

√
L).
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D. Pipes selection

We are given an array of non-negative integers with sum s. Let kx
be total number of segments with sum x . For every x from 1 to s
find bkx+1

2 c-th lexicographically smallest segment with sum x
(segments are ordered by left end, then by right end).
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D. Pipes selection

First of all, how do we find all kx efficiently?

This is a standard
application of fast polynomial multiplication using FFT (fast
Fourier transform).
Let pn be the sum of first n elements, and let qx be the number of
such n that pn = x . Construct polynomials A(x) =

∑s
i=0 qix

i and
B(x) =

∑s
i=0 qs−ix

i . Define C (x) = A(x)B(x) =
∑2s

i=0 cix
i . It is

evident from multiplication definition that kx = cs+x .
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D. Pipes selection

Ok, but how do we find a segment with given sum and
lexicographical position? Iterate over all possible beginning takes
too long (O(ns) time in the worst case).

Sqrt-decomposition helps. Let’s divide the array into t blocks of
equal size.
For j-th block with beginning lj and end rj , construct polynomial
Bj(x) =

∑rj
i=lj

qs−ix
i , and define Cj(x) = A(x)Bj(x) =

∑2s
i=0 cj ix

i .
The number of segments with sum x which left end lies in segment
[lj ; rj ] is exactly cj s+x .
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D. Pipes selection

Given C (x) and all Cj(x), we can find every answer in O(n/t + t).

First, find the block which contains the beginning of the
sought segment by simply iterating the blocks from left to
right (this requires comparisons of lex number with cj s+x .
Then, iterate over elements inside the block to find the actual
segment (this doesn’t require any knowledge about Cj(x))
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D. Pipes selection

The complexity is O(ts log s + s(n/t + t)).

To achieve optimum choose t ∼
√
n/ log s, for a total complexity

of O(s
√
n log s).

In practice, FFT has significantly higher intrinsic constant factor,
which means that in order to balance it out, t should be slightly
lower than the theoretic optimum.
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E. Rebuild

Given a sequence of points in the plane, build circles centered at
each point such that circles which are centered at consecutive
points are tangent, and also the first and the last circles are
tangent. Minimize total area of circles.

Let di be the distance between i-th point and (i + 1)-th point, and
dn be the distance between the first and the last point. Restate the
problem: we have to choose radii xi such that x1 + x2 = d1, . . . ,
xn + x1 = d1, while minimizing

∑
x2i .
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E. Rebuild

Consider cases when n is even or odd.

n is odd. We can find S =
∑

xi as
∑

di/2, and then express
all xi explicitly, which means that there is unique solution to
the system. It suffices to check that all xi are non-negative.
n is even. Now S =

∑
i is odd di =

∑
i is even di must hold, else

no solution exists. Fix x1, then x2 = d1 − x1,
x3 = d2 − d1 + x1, and so on. Every xi should be non-negative,
which implies inequalities in terms of x1. If these inequalities
contradict, there is no solution either, otherwise x1 is forced to
belong to a segment L 6 x1 6 R .
Finally, substituting expressions for xi , obtain∑

x2i = ax21 + bx1 + c for some real a, b, c .
Minimizing a quadratic function on a segment is trivial: if
global minimum x0 = − b

2a belongs to [L;R], then x0 is the
answer, otherwise one of the segment ends L, R is the answer.
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F. Almost sorted array

Given an array of numbers, we have to erase at most one element
so that to make the array becomes either non-decreasing or
non-increasing.

Let us try to make array non-decreasing, and then repeat the
procedure for the reversed array.
Suppose that we have erased ai . The resulting array is
non-decreasing if first i − 1 elements are sorted, last n − i elements
are sorted, and ai−1 6 ai+1 (if i = 1 or i = n, this condition is
redundant). Find the longest sorted prefix and suffix, then try to
erase each element. This makes for a simple O(n) solution.
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G. Dancing Stars on Me

Given a set of points with integer coordinates, determine if it
coincides with the set of vertices of a regular polygon.

Fact
The only possible regular polygon with all vertices at integer points
is a square.

To show this, consider three consecutive vertices A, B , C of the
regular n-gon. Observe that vector BC is the vector AB rotated by
2π/n. Since both vectors have integer coordinates, we conclude
that cos(2π/n) and sin(2π/n) are both rational. The only n > 3
satisfying this is n = 4.
Checking that four given points are at vertices of a square is trivial.
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H. Partial Tree

We want to build a tree on n vertices. For a vertex of degree i we
get score di . Maximize total score (over all vertices).
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H. Partial Tree

Which degree sequences d1, . . . , dn correspond to trees on n
vertices? Trivial necessary coniditions are di > 1 and∑

di = 2(n − 1).

These are actually sufficient. Construct a tree as follows: connect
all vertices with di > 1 in a chain, then connect enough leaves to
every vertex of the chain to obtain needed degrees.
Thus we have to solve a variety of the backpack problem: given
cost for an item of every weight from 1 to n − 1, choose n items
with total weight of 2(n − 1) and maximal possible cost. For
convenience, we substract 1 from all weights, so the total weight
becomes n − 2.
Start from the set of n items of weight 0, then replace them with
heavier items one by one. Denote dpw the maximal cost of a set
with total weight w obtained this way. By definition, dp0 = nf (0),
dpw = maxwk=1 dpw−k + f (k)− f (0). The answer is dpn−2. This
yields an O(n2) solution.
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I. Chess puzzle

We are given a rectangular board, where some cells have fixed
colors (black or white), while some haven’t. We have to color all
non-colored cells. We get 1 point for every pair of cells (x1, y1) and
(x2, y2) if:

|x1 − x2| = a, |y1 − y2| = b (a, b > 0)
cells (x1, y1) and (x2, y2) are of different colors

Find a coloring that maximizes total score, if there are several
colorings, choose lexicographically minimal.



A B C D E F G H I J K L M

I. Chess puzzle

Let’s ignore lex-min requirement for now. How to build any optimal
coloring?

If we add edges between pairs of cells with |x1 − x2| = a,
|y1 − y2| = b, we obtain a bipartite graph. We can construct a
convenient partition: first a rows are in the first part, next a rows
are in the second part and so on.
If n = m = 5, a = 2, the partition looks as follows:

1 1 1 1 1
1 1 1 1 1
2 2 2 2 2
2 2 2 2 2
1 1 1 1 1

Flip the colors of all cells in the second part. Now we have to
maximize number of adjacent pairs with the same color.
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I. Chess puzzle

This can be done using min-cut:

add source and sink
add edges with capacity 1 between adjacent pairs of cells (in
both directions)
add edges with capacity ∞ from source to cells which are
initially colored black (accounting for flipping colors of the
second part)
add edges with capacity ∞ from cells which are initially
colored white to sink

Any S − T cut corresponds to coloring (S ’s part — black, T ’s
part — white), and its capacity is exactly the number of points of
different color. Minimal S − T cut corresponds to coloring with
maximal number of same-colored adjacent pairs.
Any sufficiently fast algorithm for max-flow (e.g. Dinic) will allow
us to build some minimal cut.
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I. Chess puzzle

How to build lexicographically minimal coloring?

First build any optimal coloring. Then, consider cells in the
lexicographical order. If actual color (that is, without flipping) of
the current cell is B, then we can’t minimize it further. Add the
edge between the cell and source/sink (depending on the part of
the cell), as if the color were fixed from the beginning.
If color of the current cell is W, then we should try to change it to
B. Assume that colors of all earlier cells are fixed by adding edges
from source/to sink.
Suppose that changing is possible. Add edge between the cell and
source/sink (depending on whether the cell’s color was flipped or
not). The value of min-cut should not increase; equivalently, it
should be impossible to push one unit of flow after adding the edge.
It means that the cell and sink/source should not be connected in
the residual network.
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I. Chess puzzle

To sum up, we have to add edges to the network and for each
vertex remember whether it is reachable from the source, and
whether sink is reachable from it using edges of residual network.

To do this, after adding every edge run DFS from the cell adjacent
to it; visibility markings should not be cleared between runs. This
process takes O(n2) total time, which means complexity depends
entirely on the max-flow algorithm used.
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J. Chip Factory

Given an array si , find

max
i ,j ,k — distinct indices

(si + sj)⊕ sk

.
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J. Chip Factory

Suppose that we have fixed i and j in the (si + sj)⊕ sk expression.

Let l be the maximal position of 1 in a binary representation of any
sk .
In order to maximize the above expression, the l-th bit of sk should
differ from the l-th bit of si + sj if that is possible (that is, if we
can choose k (different from i and j) such that l-th bit of sk
satisfies us).
Once we have fixed the l-th bit, we choose (l − 1)-th bit according
to the same reasoning, and so on.
At every given moment, several greatest bits of sk are fixed. Next
bit of sk depends on whether we can choose k (different from i and
j) so that a prefix of sk matches our preference.
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J. Chip Factory

s: i = 1, j = 3
001002
101102
001012
001112
010112
si + sj = 111012

sk =?????
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J. Chip Factory

s: i = 1, j = 3
001002
101102
001012
001112
010112
si + sj = 111012
sk = 000??2

No possible sk match prefix, have to choose 2-nd bit otherwise.
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si + sj = 111012
sk = 001??2
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J. Chip Factory

s: i = 1, j = 3
001002
101102
001012
001112
010112
si + sj = 111012
sk = 0011?2

No possible sk match prefix (note that s3 matches but k has to be
different from i and j).
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J. Chip Factory

s: i = 1, j = 3
001002
101102
001012
001112
010112
si + sj = 111012
sk = 0010?2
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J. Chip Factory

s: i = 1, j = 3
001002
101102
001012
001112
010112
si + sj = 111012
sk = 001002

Maximal possible (si + sj)⊕ sk is 111012 ⊕ 001002 = 110012 = 25.
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J. Chip Factory

To determine existence of sk with given prefix, store binary
representations in a trie, with greater bits being first characters.

Also, for every reachable prefix store a list of sk that begin with this
prefix.
While building a prefix of optimal sk , keep the position in the trie
corresponding to current prefix. Use the list of sk for the prefix
when deciding the next symbol of sk .
Total working time of this solution is O(n2l).
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To determine existence of sk with given prefix, store binary
representations in a trie, with greater bits being first characters.
Also, for every reachable prefix store a list of sk that begin with this
prefix.
While building a prefix of optimal sk , keep the position in the trie
corresponding to current prefix. Use the list of sk for the prefix
when deciding the next symbol of sk .
Total working time of this solution is O(n2l).
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K. Maximum spanning forest

Consider a region of rectangular grid. We have to answer n queries
“add edges with weight c between all pairs of adjacent points inside
a rectangle”, and find the weight of maximal spanning forest built
on the points inside a region.
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K. Maximum spanning forest

We will solve the problem off-line. Represent a query rectangle as
[xl ; xr )× [yl ; yr ).

Compress the coordinates: let xi be the sorted sequence of different
x ’s appearing as a border coordinate of a query rectangle; similarily,
construct yi .
Call a rectangle elementary if its x-borders are adjacent elements of
xi , and same for y -borders. Denote Ri ,j [xi ; xi+1)× [yj ; yj+1).
Clearly, there are O(n2) elementary rectangles.
All edges of the grid lie either inside of an elementary rectangle, or
connect two points of adjacent elementary rectangles.
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K. Maximum spanning forest

We will solve the problem off-line. Represent a query rectangle as
[xl ; xr )× [yl ; yr ).
Compress the coordinates: let xi be the sorted sequence of different
x ’s appearing as a border coordinate of a query rectangle; similarily,
construct yi .
Call a rectangle elementary if its x-borders are adjacent elements of
xi , and same for y -borders. Denote Ri ,j [xi ; xi+1)× [yj ; yj+1).
Clearly, there are O(n2) elementary rectangles.
All edges of the grid lie either inside of an elementary rectangle, or
connect two points of adjacent elementary rectangles.
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K. Maximum spanning forest

Observation
At any moment, all edges inside an elementary rectangle have the
same weight (if we consider only the heaviest of multiple edges),
and all edges between points of two adjacent rectangles have the
same weight.

Moreover, let a and b be the weights of edges inside two adjacent
rectangles, and c be the weight of edges between these rectangles.
Then, c 6 min(a, b), since in-between edges can lie inside a query
rectangle only if both adjacent rectangles do.

Introduce the following arrays:
wi ,j — the weight of edges inside the elementary rectangle Ri ,j

hi ,j — the weight of edges between Ri ,j and Ri+1,j

vi ,j — the weight of edges between Ri ,j and Ri ,j+1

For each query update entries of arrays which correspond to edges
lying inside the query rectangle. Each update takes O(n2) time.
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Observation
At any moment, all edges inside an elementary rectangle have the
same weight (if we consider only the heaviest of multiple edges),
and all edges between points of two adjacent rectangles have the
same weight.
Moreover, let a and b be the weights of edges inside two adjacent
rectangles, and c be the weight of edges between these rectangles.
Then, c 6 min(a, b), since in-between edges can lie inside a query
rectangle only if both adjacent rectangles do.

Introduce the following arrays:
wi ,j — the weight of edges inside the elementary rectangle Ri ,j

hi ,j — the weight of edges between Ri ,j and Ri+1,j

vi ,j — the weight of edges between Ri ,j and Ri ,j+1

For each query update entries of arrays which correspond to edges
lying inside the query rectangle. Each update takes O(n2) time.
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K. Maximum spanning forest

Imagine that we’re running Kruskal’s algorithm on the graph: look
through edges by decreasing of weight, add an edge if it doesn’t
create a cycle.

It follows from the observation (the c 6 min(a, b) part) that we
can consider all the edges inside elementary rectangles first, and
then consider in-between edges.
In every elementary rectangle all points become merged into a single
component, for a total weight of (number of points− 1) · wi ,j .
After that, we can consider each elementary rectangle a single
vertex. Thus, adding in-between edges is reduced to building MST
of a simple graph with O(n2) vertices and edges. That is, every
query can be answered in O(n2 log n) time, for a total O(n3 log n)
complexity solution.
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Imagine that we’re running Kruskal’s algorithm on the graph: look
through edges by decreasing of weight, add an edge if it doesn’t
create a cycle.
It follows from the observation (the c 6 min(a, b) part) that we
can consider all the edges inside elementary rectangles first, and
then consider in-between edges.
In every elementary rectangle all points become merged into a single
component, for a total weight of (number of points− 1) · wi ,j .
After that, we can consider each elementary rectangle a single
vertex. Thus, adding in-between edges is reduced to building MST
of a simple graph with O(n2) vertices and edges. That is, every
query can be answered in O(n2 log n) time, for a total O(n3 log n)
complexity solution.
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L. House Building

Given a set of 1× 1× 1 cubes on rectangular grid lying on the
ground in several towers, determine the outer area of the
construction.
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L. House Building

Possible external faces are as follows:

Top of a tower — the number of such faces is the number of
towers with non-zero height.
Side of a tower. Consider adjacent towers of heights a and b.
The number of side faces lying in their common border plane
is |a− b|. It’s convenient to think that the construction is
surrounded by towers of height 0.

Thus, just iterate over all adjacent pairs of towers, there is only
linear (O(nm)) number of them. This solution is O(nm).
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towers with non-zero height.
Side of a tower. Consider adjacent towers of heights a and b.
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is |a− b|. It’s convenient to think that the construction is
surrounded by towers of height 0.
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M. Security Corporations

We are given a set of lines in the plane, no three of them share a
point. Choose minimal number c and assign an index from [1; c] to
every intersection of two lines in such a way that every
neighbouring intersections on the same line have different indices.
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M. Security Corporations

First of all, how large c can be?

If no three lines form a triangle, then there are only two classes of
parallel lines. The intersection graph in this case is essentially a grid
(or a single point), so c 6 2, and it is fairly easy to assign indices.
If there are three lines forming a triangle, then it’s easy to show
that some intersections form a triangle as well, so c > 3.
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M. Security Corporations

Actually, c = 3 suffices in all cases. Build a 3-coloring of the
intersection graph constructively:

Find all intersection points and sort them lexicographically,
that is, by increasing of x , and in the case of equal x ’s, by
increasing of y . All the points on every line are thus ordered
from one end to another.
Consider points one by one in sorted order. For the current
point, find the lines it belongs to, and choose a different color
from previous points on these lines.

It’s easy to see that the algorithm constructs a correct 3-coloring.
Moreover, it uses minimal number of colors in cases when c < 3.
Its complexity is O(n2 log n), the hardest part being sorting of
points.
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