
A B C D E F G H I J K L

Long Contest Editorial
November 11, 2015

Moscow International Workshop ACM ICPC, MIPT, 2015

A B C D E F G H I J K L

A. Album of numbers

The problem asked to keep a multiset of integers while
adding/removing elements, and to find average smallest number of
a random multi-subset of the current multiset (that is, every
non-empty multi-subset has equal chance to be chosen) after every
operation. Results should be accurate within 10−6 absolute or
relative precision.

A B C D E F G H I J K L

A. Album of numbers

Counting
Denote all different numbers in the multiset in the increasing order
b1, . . . , bk . Let ai be the number of copies of bi . Then:

the number of different non-empty multisubsets is∏k
i=1(ai + 1)− 1.

the number of multisubsets with bi as the minimum is
ai
∏k

j=i+1(aj + 1) (choose no smaller numbers, at least one bi ,
and greater numbers arbitrarily).
therefore, the average minimal number is∑k

i=1 aibi
∏k

j=i+1(aj + 1)∏k
i=1(ai + 1)− 1

A B C D E F G H I J K L

A. Album of numbers

Counting
Denote all different numbers in the multiset in the increasing order
b1, . . . , bk . Let ai be the number of copies of bi . Then:

the number of different non-empty multisubsets is∏k
i=1(ai + 1)− 1.

the number of multisubsets with bi as the minimum is
ai
∏k

j=i+1(aj + 1) (choose no smaller numbers, at least one bi ,
and greater numbers arbitrarily).
therefore, the average minimal number is∑k

i=1 aibi
∏k

j=i+1(aj + 1)∏k
i=1(ai + 1)− 1

A B C D E F G H I J K L

A. Album of numbers

Counting
Denote all different numbers in the multiset in the increasing order
b1, . . . , bk . Let ai be the number of copies of bi . Then:

the number of different non-empty multisubsets is∏k
i=1(ai + 1)− 1.

the number of multisubsets with bi as the minimum is
ai
∏k

j=i+1(aj + 1) (choose no smaller numbers, at least one bi ,
and greater numbers arbitrarily).

therefore, the average minimal number is∑k
i=1 aibi

∏k
j=i+1(aj + 1)∏k

i=1(ai + 1)− 1

A B C D E F G H I J K L

A. Album of numbers

Counting
Denote all different numbers in the multiset in the increasing order
b1, . . . , bk . Let ai be the number of copies of bi . Then:

the number of different non-empty multisubsets is∏k
i=1(ai + 1)− 1.

the number of multisubsets with bi as the minimum is
ai
∏k

j=i+1(aj + 1) (choose no smaller numbers, at least one bi ,
and greater numbers arbitrarily).
therefore, the average minimal number is∑k

i=1 aibi
∏k

j=i+1(aj + 1)∏k
i=1(ai + 1)− 1

A B C D E F G H I J K L

A. Album of numbers

Let’s find numerator and denominator of∑k
i=1 aibi

∏k
j=i+1(aj + 1)∏k

i=1(ai + 1)− 1

separately. Divide them both by P =
∏k

i=1(ai + 1) so that they
don’t get too big.

A B C D E F G H I J K L

A. Album of numbers

The denominator becomes simply P−1
P .

Every operation increases or decreases ai by 1. Let a′i by the new
value of ai , then P ′ = P/(ai + 1) · (a′i + 1).
The only problem is that P can overflow all built-in floating point
types. To bypass this problem, store logP instead P . If logP is too
large, then P−1

P is very close to 1, otherwise find it explicitly.

A B C D E F G H I J K L

A. Album of numbers

The denominator becomes simply P−1
P .

Every operation increases or decreases ai by 1. Let a′i by the new
value of ai , then P ′ = P/(ai + 1) · (a′i + 1).

The only problem is that P can overflow all built-in floating point
types. To bypass this problem, store logP instead P . If logP is too
large, then P−1

P is very close to 1, otherwise find it explicitly.

A B C D E F G H I J K L

A. Album of numbers

The denominator becomes simply P−1
P .

Every operation increases or decreases ai by 1. Let a′i by the new
value of ai , then P ′ = P/(ai + 1) · (a′i + 1).
The only problem is that P can overflow all built-in floating point
types. To bypass this problem, store logP instead P . If logP is too
large, then P−1

P is very close to 1, otherwise find it explicitly.

A B C D E F G H I J K L

A. Album of numbers

Numerator becomes

k∑
i=1

aibi∏i
j=1(aj + 1)

Observation
Let n be the number of operations, and A is the maximal possible
value of bi
Note that if all ai are positive then i-th summand does not exceed
nA/2i . Therefore, to get the answer right up to ε error we have to
sum up only first O(log(nAε−1)) summands. Under given
constraints summing only first 50-60 summands is enough.

Having noticed that, we can store a std::set (or a similar
structure) of pairs (ai , bi) and compute the expression naively for
every operation.

A B C D E F G H I J K L

A. Album of numbers

Numerator becomes

k∑
i=1

aibi∏i
j=1(aj + 1)

Observation
Let n be the number of operations, and A is the maximal possible
value of bi
Note that if all ai are positive then i-th summand does not exceed
nA/2i . Therefore, to get the answer right up to ε error we have to
sum up only first O(log(nAε−1)) summands. Under given
constraints summing only first 50-60 summands is enough.

Having noticed that, we can store a std::set (or a similar
structure) of pairs (ai , bi) and compute the expression naively for
every operation.

A B C D E F G H I J K L

A. Album of numbers

Numerator becomes

k∑
i=1

aibi∏i
j=1(aj + 1)

Observation
Let n be the number of operations, and A is the maximal possible
value of bi
Note that if all ai are positive then i-th summand does not exceed
nA/2i . Therefore, to get the answer right up to ε error we have to
sum up only first O(log(nAε−1)) summands. Under given
constraints summing only first 50-60 summands is enough.

Having noticed that, we can store a std::set (or a similar
structure) of pairs (ai , bi) and compute the expression naively for
every operation.

A B C D E F G H I J K L

A. Album of numbers

The resulting solution has time complexity of O(n log(nAε−1) log n)
(log n factor for a set operation complexity).

A B C D E F G H I J K L

B. Well Off

We are given a set of real variables xi and a set of constraints of
kind ±xi ± xj > 0. We have to check whether the set of constraints
is satisfiable, that is, values of xi can be chosen in such a way that
all constraints are met.

A B C D E F G H I J K L

B. Well Off

Rewrite all constraints as ±xi > ∓xj . Build a directed graph as
follows: create vertices for xi and −xi , then for every constraint
a > b add an edge from a to b (note that this also implies
−b > −a).

Observation
If the constructed graph contains a cycle, then the set of
constraints is contradictory, because by following a cycle we obtain
that a certain number must be greater than itself.

Noitavresbo (converse observation)

If the graph is acyclic, then the constraints can be met. The graph
can be sorted topologically, moreover, due to the symmetry of the
graph, we can find such an ordering that is symmetrical upon
reversing and changing all variables to their negations. After that,
assigning real values to variables is trivial.

A B C D E F G H I J K L

B. Well Off

Rewrite all constraints as ±xi > ∓xj . Build a directed graph as
follows: create vertices for xi and −xi , then for every constraint
a > b add an edge from a to b (note that this also implies
−b > −a).

Observation
If the constructed graph contains a cycle, then the set of
constraints is contradictory, because by following a cycle we obtain
that a certain number must be greater than itself.

Noitavresbo (converse observation)

If the graph is acyclic, then the constraints can be met. The graph
can be sorted topologically, moreover, due to the symmetry of the
graph, we can find such an ordering that is symmetrical upon
reversing and changing all variables to their negations. After that,
assigning real values to variables is trivial.

A B C D E F G H I J K L

B. Well Off

Rewrite all constraints as ±xi > ∓xj . Build a directed graph as
follows: create vertices for xi and −xi , then for every constraint
a > b add an edge from a to b (note that this also implies
−b > −a).

Observation
If the constructed graph contains a cycle, then the set of
constraints is contradictory, because by following a cycle we obtain
that a certain number must be greater than itself.

Noitavresbo (converse observation)

If the graph is acyclic, then the constraints can be met. The graph
can be sorted topologically, moreover, due to the symmetry of the
graph, we can find such an ordering that is symmetrical upon
reversing and changing all variables to their negations. After that,
assigning real values to variables is trivial.

A B C D E F G H I J K L

B. Well Off

Therefore, just build the graph as described above and look for
cycles. It can be done in O(n +m) with a simple DFS.

A B C D E F G H I J K L

C. Accurate shots

Given binary representation of n without leading zeros, flip the least
number of its bits so that the resulting number is divisible by m.
Also, output the number of different ways to do so along with the
minimal divisible number obtainable this way.
This problem has a very tight memory limit (8 megabytes).

If the memory limit were more generous, we could implement a
standard meet-in-the-middle solution: generate all possible states of
left (with greater bits) and right (with lower bits) halfs of binary
representations, then for every case for some half choose the best
matching options from the other half (under condition of divisibility
by m). Possible implementations use O(

√
n log n) time and O(

√
n)

memory, which is too much in this problem.

A B C D E F G H I J K L

C. Accurate shots

Given binary representation of n without leading zeros, flip the least
number of its bits so that the resulting number is divisible by m.
Also, output the number of different ways to do so along with the
minimal divisible number obtainable this way.
This problem has a very tight memory limit (8 megabytes).
If the memory limit were more generous, we could implement a
standard meet-in-the-middle solution: generate all possible states of
left (with greater bits) and right (with lower bits) halfs of binary
representations, then for every case for some half choose the best
matching options from the other half (under condition of divisibility
by m). Possible implementations use O(

√
n log n) time and O(

√
n)

memory, which is too much in this problem.

A B C D E F G H I J K L

C. Accurate shots

To deal with that, iterate over possible remainders of, say, left half
modulo m. Iterate for all possible states of left half with the chosen
remainder, store the answer (the minimal number of bits to flip)and
the number of best choices for the left half. Independently, iterate
over all matching states of right half, store the answers for them as
well.

Finally, the minimal number of bits to flip is the sum of the answers
for two halves, and the number of ways to obtain it is the product
of two numbers for halves.
Clearly, each state of any half is considered only once. It suffices to
notice that the right half’s remainder cannot exceed O(

√
n), so

that’s a lower bound on the number of possible remainders to
consider.
To sum up, the solution of time complexity O(

√
n) and memory

complexity O(1) is obtained.

A B C D E F G H I J K L

C. Accurate shots

To deal with that, iterate over possible remainders of, say, left half
modulo m. Iterate for all possible states of left half with the chosen
remainder, store the answer (the minimal number of bits to flip)and
the number of best choices for the left half. Independently, iterate
over all matching states of right half, store the answers for them as
well.
Finally, the minimal number of bits to flip is the sum of the answers
for two halves, and the number of ways to obtain it is the product
of two numbers for halves.

Clearly, each state of any half is considered only once. It suffices to
notice that the right half’s remainder cannot exceed O(

√
n), so

that’s a lower bound on the number of possible remainders to
consider.
To sum up, the solution of time complexity O(

√
n) and memory

complexity O(1) is obtained.

A B C D E F G H I J K L

C. Accurate shots

To deal with that, iterate over possible remainders of, say, left half
modulo m. Iterate for all possible states of left half with the chosen
remainder, store the answer (the minimal number of bits to flip)and
the number of best choices for the left half. Independently, iterate
over all matching states of right half, store the answers for them as
well.
Finally, the minimal number of bits to flip is the sum of the answers
for two halves, and the number of ways to obtain it is the product
of two numbers for halves.
Clearly, each state of any half is considered only once. It suffices to
notice that the right half’s remainder cannot exceed O(

√
n), so

that’s a lower bound on the number of possible remainders to
consider.

To sum up, the solution of time complexity O(
√
n) and memory

complexity O(1) is obtained.

A B C D E F G H I J K L

C. Accurate shots

To deal with that, iterate over possible remainders of, say, left half
modulo m. Iterate for all possible states of left half with the chosen
remainder, store the answer (the minimal number of bits to flip)and
the number of best choices for the left half. Independently, iterate
over all matching states of right half, store the answers for them as
well.
Finally, the minimal number of bits to flip is the sum of the answers
for two halves, and the number of ways to obtain it is the product
of two numbers for halves.
Clearly, each state of any half is considered only once. It suffices to
notice that the right half’s remainder cannot exceed O(

√
n), so

that’s a lower bound on the number of possible remainders to
consider.
To sum up, the solution of time complexity O(

√
n) and memory

complexity O(1) is obtained.

A B C D E F G H I J K L

D. Prom

Given two sequence of numbers ai and bj , and a number d ,
determine the number of pairs i , j such that |ai − bj | 6 d .

First, sort both sequences. For every number ai we want to find all
numbers bj such that ai − d 6 bj 6 ai + d . Clearly, such bj form a
segment in a sorted sequence, and we can find both ends of the
segment using simple binary search.
So, total complexity is O((n +m) log(n +m)) (both sorting and
binary searching).

A B C D E F G H I J K L

D. Prom

Given two sequence of numbers ai and bj , and a number d ,
determine the number of pairs i , j such that |ai − bj | 6 d .
First, sort both sequences. For every number ai we want to find all
numbers bj such that ai − d 6 bj 6 ai + d . Clearly, such bj form a
segment in a sorted sequence, and we can find both ends of the
segment using simple binary search.

So, total complexity is O((n +m) log(n +m)) (both sorting and
binary searching).

A B C D E F G H I J K L

D. Prom

Given two sequence of numbers ai and bj , and a number d ,
determine the number of pairs i , j such that |ai − bj | 6 d .
First, sort both sequences. For every number ai we want to find all
numbers bj such that ai − d 6 bj 6 ai + d . Clearly, such bj form a
segment in a sorted sequence, and we can find both ends of the
segment using simple binary search.
So, total complexity is O((n +m) log(n +m)) (both sorting and
binary searching).

A B C D E F G H I J K L

E. Impressive graphs

We are given a permutation of 1, . . . , n. Select k pairwise disjoint
increasing subsequences of maximal total size.

This is not a full explanation of the solution, but rather an outline
of direction to think.

A B C D E F G H I J K L

E. Impressive graphs

We are given a permutation of 1, . . . , n. Select k pairwise disjoint
increasing subsequences of maximal total size.
This is not a full explanation of the solution, but rather an outline
of direction to think.

A B C D E F G H I J K L

E. Impressive graphs

Recall the algorithm for k = 1.

k = 1 (largest increasing subsequence)

Store dj — the smallest number x such that there is an increasing
subsequence ending in x . Initially, d0 = −∞, dj =∞ for all
positive j . Take elements of the sequence from left to right; if the
next element is x , find the largest dj less than x and set dj+1 = x .

A B C D E F G H I J K L

E. Impressive graphs

Generalization for k > 1

Store a table di ,j . Initially, di ,0 = −∞, di ,j =∞ for all positive j .
Take elements of the sequence from left to right. If the next
element is x , find the largest d1,j less than x , then swap d1,j+1 and
x ; after that, find the largest d2,j less than x and swap d2,j+1 and
x ; and so on.

The maximal total size is the number of non-∞ elements in first k
rows of the table.

Question 1
How would you prove the algorithm for k > 1?

Question 2
How can you enhance the algorithm to produce the sequences
instead of the total size?

A B C D E F G H I J K L

E. Impressive graphs

Generalization for k > 1

Store a table di ,j . Initially, di ,0 = −∞, di ,j =∞ for all positive j .
Take elements of the sequence from left to right. If the next
element is x , find the largest d1,j less than x , then swap d1,j+1 and
x ; after that, find the largest d2,j less than x and swap d2,j+1 and
x ; and so on.
The maximal total size is the number of non-∞ elements in first k
rows of the table.

Question 1
How would you prove the algorithm for k > 1?

Question 2
How can you enhance the algorithm to produce the sequences
instead of the total size?

A B C D E F G H I J K L

E. Impressive graphs

Generalization for k > 1

Store a table di ,j . Initially, di ,0 = −∞, di ,j =∞ for all positive j .
Take elements of the sequence from left to right. If the next
element is x , find the largest d1,j less than x , then swap d1,j+1 and
x ; after that, find the largest d2,j less than x and swap d2,j+1 and
x ; and so on.
The maximal total size is the number of non-∞ elements in first k
rows of the table.

Question 1
How would you prove the algorithm for k > 1?

Question 2
How can you enhance the algorithm to produce the sequences
instead of the total size?

A B C D E F G H I J K L

E. Impressive graphs

Generalization for k > 1

Store a table di ,j . Initially, di ,0 = −∞, di ,j =∞ for all positive j .
Take elements of the sequence from left to right. If the next
element is x , find the largest d1,j less than x , then swap d1,j+1 and
x ; after that, find the largest d2,j less than x and swap d2,j+1 and
x ; and so on.
The maximal total size is the number of non-∞ elements in first k
rows of the table.

Question 1
How would you prove the algorithm for k > 1?

Question 2
How can you enhance the algorithm to produce the sequences
instead of the total size?

A B C D E F G H I J K L

F. Pen

Given a bracket sequence with three types of brackets, determine
the minimal number of brackets added in the beginning and/or the
end of the sequence such that the sequence becomes correct, and
output the resulting sequence, or find that it’s impossible to do so.

A B C D E F G H I J K L

F. Pen

Look at the sequence from left to right, and maintain a stack to
find all unmatched brackets: that is, if the current bracket is closing
and it matches the bracket on top of the stack, we remove the top,
otherwise put the new bracket on top.

Observation
By adding brackets in the beginning we can only fix several first
unmatched closing brackets until an unmatched opening bracket is
met.
Same goes for adding brackets in the end. This implies that the
sequence can be fixed only if unmatched brackets are first some
closing brackets, and then some opening brackets.

A B C D E F G H I J K L

F. Pen

Look at the sequence from left to right, and maintain a stack to
find all unmatched brackets: that is, if the current bracket is closing
and it matches the bracket on top of the stack, we remove the top,
otherwise put the new bracket on top.

Observation
By adding brackets in the beginning we can only fix several first
unmatched closing brackets until an unmatched opening bracket is
met.

Same goes for adding brackets in the end. This implies that the
sequence can be fixed only if unmatched brackets are first some
closing brackets, and then some opening brackets.

A B C D E F G H I J K L

F. Pen

Look at the sequence from left to right, and maintain a stack to
find all unmatched brackets: that is, if the current bracket is closing
and it matches the bracket on top of the stack, we remove the top,
otherwise put the new bracket on top.

Observation
By adding brackets in the beginning we can only fix several first
unmatched closing brackets until an unmatched opening bracket is
met.
Same goes for adding brackets in the end. This implies that the
sequence can be fixed only if unmatched brackets are first some
closing brackets, and then some opening brackets.

A B C D E F G H I J K L

F. Pen

Example
Consider a bracket sequence ()][]])(()[.

Find all the unmatched brackets (marked in red): ()][]])(()[
Add new brackets to fix the unmatched brackets (marked in blue):
([[()][]])(()[])

Complexity is O(n).

A B C D E F G H I J K L

F. Pen

Example
Consider a bracket sequence ()][]])(()[.
Find all the unmatched brackets (marked in red): ()][]])(()[

Add new brackets to fix the unmatched brackets (marked in blue):
([[()][]])(()[])

Complexity is O(n).

A B C D E F G H I J K L

F. Pen

Example
Consider a bracket sequence ()][]])(()[.
Find all the unmatched brackets (marked in red): ()][]])(()[
Add new brackets to fix the unmatched brackets (marked in blue):
([[()][]])(()[])

Complexity is O(n).

A B C D E F G H I J K L

F. Pen

Example
Consider a bracket sequence ()][]])(()[.
Find all the unmatched brackets (marked in red): ()][]])(()[
Add new brackets to fix the unmatched brackets (marked in blue):
([[()][]])(()[])

Complexity is O(n).

A B C D E F G H I J K L

G. Board game

We’re given a set of points on the plane with color assigned to
every point. Find the maximal distance between all pairs of points
which are of different color.

A B C D E F G H I J K L

G. Board game

Consider the case when only two colors are present, that is, given
two sets of points, we have to find the maximal distance between
points from different sets.

Observation
We can add the interior of the convex hull to every set without
changing the answer.
Short reasoning: let a and b be the farthest points from the convex
hulls’ interiors of sets A and B . Clearly, b is the farthest point of B
in the direction of vector b − a (that is, scalar product (x , b − a) is
maximized for x = b), similarily, a is the farthest point of A in the
direction of vector a− b. That implies that both points are on
convex hulls’ borders, and therefore belong to initial sets (they can
not lie on the sides, since otherwise the distance may be improved).

After the observation, we have reduced the problem to find the
farthest pair of points in two convex polygons.

A B C D E F G H I J K L

G. Board game

Consider the case when only two colors are present, that is, given
two sets of points, we have to find the maximal distance between
points from different sets.

Observation
We can add the interior of the convex hull to every set without
changing the answer.

Short reasoning: let a and b be the farthest points from the convex
hulls’ interiors of sets A and B . Clearly, b is the farthest point of B
in the direction of vector b − a (that is, scalar product (x , b − a) is
maximized for x = b), similarily, a is the farthest point of A in the
direction of vector a− b. That implies that both points are on
convex hulls’ borders, and therefore belong to initial sets (they can
not lie on the sides, since otherwise the distance may be improved).

After the observation, we have reduced the problem to find the
farthest pair of points in two convex polygons.

A B C D E F G H I J K L

G. Board game

Consider the case when only two colors are present, that is, given
two sets of points, we have to find the maximal distance between
points from different sets.

Observation
We can add the interior of the convex hull to every set without
changing the answer.
Short reasoning: let a and b be the farthest points from the convex
hulls’ interiors of sets A and B . Clearly, b is the farthest point of B
in the direction of vector b − a (that is, scalar product (x , b − a) is
maximized for x = b), similarily, a is the farthest point of A in the
direction of vector a− b. That implies that both points are on
convex hulls’ borders, and therefore belong to initial sets (they can
not lie on the sides, since otherwise the distance may be improved).

After the observation, we have reduced the problem to find the
farthest pair of points in two convex polygons.

A B C D E F G H I J K L

G. Board game

Consider the case when only two colors are present, that is, given
two sets of points, we have to find the maximal distance between
points from different sets.

Observation
We can add the interior of the convex hull to every set without
changing the answer.
Short reasoning: let a and b be the farthest points from the convex
hulls’ interiors of sets A and B . Clearly, b is the farthest point of B
in the direction of vector b − a (that is, scalar product (x , b − a) is
maximized for x = b), similarily, a is the farthest point of A in the
direction of vector a− b. That implies that both points are on
convex hulls’ borders, and therefore belong to initial sets (they can
not lie on the sides, since otherwise the distance may be improved).

After the observation, we have reduced the problem to find the
farthest pair of points in two convex polygons.

A B C D E F G H I J K L

G. Board game

Definition
Minkowski sum of vector sets A and B is the set
C = {x + y |x ∈ A, y ∈ B}.

Fact
Minkowski sum of two convex polygons is a convex polygon.
Moreover, it can be found in O(n) time.

Consider C — Minkowski sum of polygons A and −B (which is
obtained from B by changing every point’s coordinates to their
negatives). By definition, its points are exactly all vectors starting
somewhere in B and ending somewhere in A. To find maximal
distance, choose a vertex of C farthest from the origin.
Therefore, the problem with two colors can be solved in
O((n +m) log(n +m)) (for building convex hulls of the sets).

A B C D E F G H I J K L

G. Board game

Definition
Minkowski sum of vector sets A and B is the set
C = {x + y |x ∈ A, y ∈ B}.

Fact
Minkowski sum of two convex polygons is a convex polygon.

Moreover, it can be found in O(n) time.

Consider C — Minkowski sum of polygons A and −B (which is
obtained from B by changing every point’s coordinates to their
negatives). By definition, its points are exactly all vectors starting
somewhere in B and ending somewhere in A. To find maximal
distance, choose a vertex of C farthest from the origin.
Therefore, the problem with two colors can be solved in
O((n +m) log(n +m)) (for building convex hulls of the sets).

A B C D E F G H I J K L

G. Board game

Definition
Minkowski sum of vector sets A and B is the set
C = {x + y |x ∈ A, y ∈ B}.

Fact
Minkowski sum of two convex polygons is a convex polygon.
Moreover, it can be found in O(n) time.

Consider C — Minkowski sum of polygons A and −B (which is
obtained from B by changing every point’s coordinates to their
negatives). By definition, its points are exactly all vectors starting
somewhere in B and ending somewhere in A. To find maximal
distance, choose a vertex of C farthest from the origin.
Therefore, the problem with two colors can be solved in
O((n +m) log(n +m)) (for building convex hulls of the sets).

A B C D E F G H I J K L

G. Board game

Definition
Minkowski sum of vector sets A and B is the set
C = {x + y |x ∈ A, y ∈ B}.

Fact
Minkowski sum of two convex polygons is a convex polygon.
Moreover, it can be found in O(n) time.

Consider C — Minkowski sum of polygons A and −B (which is
obtained from B by changing every point’s coordinates to their
negatives). By definition, its points are exactly all vectors starting
somewhere in B and ending somewhere in A. To find maximal
distance, choose a vertex of C farthest from the origin.

Therefore, the problem with two colors can be solved in
O((n +m) log(n +m)) (for building convex hulls of the sets).

A B C D E F G H I J K L

G. Board game

Definition
Minkowski sum of vector sets A and B is the set
C = {x + y |x ∈ A, y ∈ B}.

Fact
Minkowski sum of two convex polygons is a convex polygon.
Moreover, it can be found in O(n) time.

Consider C — Minkowski sum of polygons A and −B (which is
obtained from B by changing every point’s coordinates to their
negatives). By definition, its points are exactly all vectors starting
somewhere in B and ending somewhere in A. To find maximal
distance, choose a vertex of C farthest from the origin.
Therefore, the problem with two colors can be solved in
O((n +m) log(n +m)) (for building convex hulls of the sets).

A B C D E F G H I J K L

G. Board game

How to deal with the multi-color problem?

Divide-and-conquer approach helps.
Consider the problem for colors with numbers from [L;R).

if R − L = 1, then there is only one color, so nothing to do.
Otherwise, choose M = b(L+ R)/2c. Find answers for
segments [L;M) and [M;R) independently. Then, find the
farthest pair of points with one point with color from [L;M)
and another with color from [M;R); that is a two-color
problem considered before.

On every depth level of recursion total number of operations does
not exceed O(n log n), therefore total complexity is O(n log2 n).
This is enough to get OK.
The solution can be optimized to O(n log n) if we merge convex
hulls of two halves in linear time instead of building new one from
scratch.

A B C D E F G H I J K L

G. Board game

How to deal with the multi-color problem?
Divide-and-conquer approach helps.
Consider the problem for colors with numbers from [L;R).

if R − L = 1, then there is only one color, so nothing to do.

Otherwise, choose M = b(L+ R)/2c. Find answers for
segments [L;M) and [M;R) independently. Then, find the
farthest pair of points with one point with color from [L;M)
and another with color from [M;R); that is a two-color
problem considered before.

On every depth level of recursion total number of operations does
not exceed O(n log n), therefore total complexity is O(n log2 n).
This is enough to get OK.
The solution can be optimized to O(n log n) if we merge convex
hulls of two halves in linear time instead of building new one from
scratch.

A B C D E F G H I J K L

G. Board game

How to deal with the multi-color problem?
Divide-and-conquer approach helps.
Consider the problem for colors with numbers from [L;R).

if R − L = 1, then there is only one color, so nothing to do.
Otherwise, choose M = b(L+ R)/2c. Find answers for
segments [L;M) and [M;R) independently. Then, find the
farthest pair of points with one point with color from [L;M)
and another with color from [M;R); that is a two-color
problem considered before.

On every depth level of recursion total number of operations does
not exceed O(n log n), therefore total complexity is O(n log2 n).
This is enough to get OK.
The solution can be optimized to O(n log n) if we merge convex
hulls of two halves in linear time instead of building new one from
scratch.

A B C D E F G H I J K L

G. Board game

How to deal with the multi-color problem?
Divide-and-conquer approach helps.
Consider the problem for colors with numbers from [L;R).

if R − L = 1, then there is only one color, so nothing to do.
Otherwise, choose M = b(L+ R)/2c. Find answers for
segments [L;M) and [M;R) independently. Then, find the
farthest pair of points with one point with color from [L;M)
and another with color from [M;R); that is a two-color
problem considered before.

On every depth level of recursion total number of operations does
not exceed O(n log n), therefore total complexity is O(n log2 n).
This is enough to get OK.

The solution can be optimized to O(n log n) if we merge convex
hulls of two halves in linear time instead of building new one from
scratch.

A B C D E F G H I J K L

G. Board game

How to deal with the multi-color problem?
Divide-and-conquer approach helps.
Consider the problem for colors with numbers from [L;R).

if R − L = 1, then there is only one color, so nothing to do.
Otherwise, choose M = b(L+ R)/2c. Find answers for
segments [L;M) and [M;R) independently. Then, find the
farthest pair of points with one point with color from [L;M)
and another with color from [M;R); that is a two-color
problem considered before.

On every depth level of recursion total number of operations does
not exceed O(n log n), therefore total complexity is O(n log2 n).
This is enough to get OK.
The solution can be optimized to O(n log n) if we merge convex
hulls of two halves in linear time instead of building new one from
scratch.

A B C D E F G H I J K L

H. Scouts

Given an array of n integers, build a binary tree as follows: choose
an element as the root, then recursively build trees on left and right
halves (if they’re not empty). Build such a tree that minimizes
maximal sum from path to leaves.

A B C D E F G H I J K L

H. Scouts

Let’s write subsegment DP formula (for the set [l ; r)):

dpl ,r =

(
r−1
min
i=l

ai +max(dpl ,i , dpi+1,r)

)

It is evident that dpl ,r increasing over increasing r (or decreasing l).
We could try to use some clever tricks like Knuth’s optimization,
but ai summand screws up monotonicity of optimal i .

A B C D E F G H I J K L

H. Scouts

Let’s write subsegment DP formula (for the set [l ; r)):

dpl ,r =

(
r−1
min
i=l

ai +max(dpl ,i , dpi+1,r)

)
It is evident that dpl ,r increasing over increasing r (or decreasing l).

We could try to use some clever tricks like Knuth’s optimization,
but ai summand screws up monotonicity of optimal i .

A B C D E F G H I J K L

H. Scouts

Let’s write subsegment DP formula (for the set [l ; r)):

dpl ,r =

(
r−1
min
i=l

ai +max(dpl ,i , dpi+1,r)

)
It is evident that dpl ,r increasing over increasing r (or decreasing l).
We could try to use some clever tricks like Knuth’s optimization,
but ai summand screws up monotonicity of optimal i .

A B C D E F G H I J K L

H. Scouts

Still, from monotonicity over segment extending it follows that for
any l < r there exists k such that

dpl ,j 6 dpj+1,r for l 6 j 6 k

dpl ,j > dpj+1,r for j < k 6 r

Given values of all dpl ,j and dpj+1,r for l 6 j < r we can find k
with binary search.
After that, we can rewrite the formula as:

dpl ,r = min

(
min
l6j6k

aj + dpj+1,r , min
j<k6r

aj + dpl ,j

)

A B C D E F G H I J K L

H. Scouts

Still, from monotonicity over segment extending it follows that for
any l < r there exists k such that

dpl ,j 6 dpj+1,r for l 6 j 6 k

dpl ,j > dpj+1,r for j < k 6 r

Given values of all dpl ,j and dpj+1,r for l 6 j < r we can find k
with binary search.

After that, we can rewrite the formula as:

dpl ,r = min

(
min
l6j6k

aj + dpj+1,r , min
j<k6r

aj + dpl ,j

)

A B C D E F G H I J K L

H. Scouts

Still, from monotonicity over segment extending it follows that for
any l < r there exists k such that

dpl ,j 6 dpj+1,r for l 6 j 6 k

dpl ,j > dpj+1,r for j < k 6 r

Given values of all dpl ,j and dpj+1,r for l 6 j < r we can find k
with binary search.
After that, we can rewrite the formula as:

dpl ,r = min

(
min
l6j6k

aj + dpj+1,r , min
j<k6r

aj + dpl ,j

)

A B C D E F G H I J K L

H. Scouts

It suffices to compute expressions of sort minl6j6k aj + dpj+1,r and
minj<k6r aj + dpl ,j .

To do this, build segment trees for all l ’s storing numbers aj + dpl ,j
for all j > l , and for all r ’s storing numbers aj + dpj+1,r for all
j < r . Change the trees’ elements as dpl ,r are computed.
To sum up, for every segment [l ; r) we perform O(log n) operations:

Binary search to find k (in O(log n))
Make queries to segment trees to compute dpl ,r (in O(log n))
Change segment trees to account for just computed value of
dpl ,r (in O(log n))

That makes for an O(n2 log n) solution.

A B C D E F G H I J K L

H. Scouts

It suffices to compute expressions of sort minl6j6k aj + dpj+1,r and
minj<k6r aj + dpl ,j .
To do this, build segment trees for all l ’s storing numbers aj + dpl ,j
for all j > l , and for all r ’s storing numbers aj + dpj+1,r for all
j < r . Change the trees’ elements as dpl ,r are computed.

To sum up, for every segment [l ; r) we perform O(log n) operations:

Binary search to find k (in O(log n))
Make queries to segment trees to compute dpl ,r (in O(log n))
Change segment trees to account for just computed value of
dpl ,r (in O(log n))

That makes for an O(n2 log n) solution.

A B C D E F G H I J K L

H. Scouts

It suffices to compute expressions of sort minl6j6k aj + dpj+1,r and
minj<k6r aj + dpl ,j .
To do this, build segment trees for all l ’s storing numbers aj + dpl ,j
for all j > l , and for all r ’s storing numbers aj + dpj+1,r for all
j < r . Change the trees’ elements as dpl ,r are computed.
To sum up, for every segment [l ; r) we perform O(log n) operations:

Binary search to find k (in O(log n))
Make queries to segment trees to compute dpl ,r (in O(log n))
Change segment trees to account for just computed value of
dpl ,r (in O(log n))

That makes for an O(n2 log n) solution.

A B C D E F G H I J K L

I. Insects

We have several types of bugs with parameters xi , yi , zi . We can
buy an antidote for any particular xi for A coins, for any yi for B
coins, and for any zi for C coins. After that, all bugs, for which xi ,
yi and zi are countered with an antidote, are killed, and we earn p
coins for each bug. Find the maximum profit.

A B C D E F G H I J K L

I. Insects

Suppose that we can choose which antidotes we buy and which
bugs we kill arbitrarily. To get a problem which is equivalent to the
original we introduce the following penalties:

penalize for A, B , or C for buying corresponding type of
antidote
penalize for p for not killing a bug
penalize for ∞ for killing a bug and not buying an antidote (of
any kind) that kills him

The problem has now become a straightforward min-cut application.

A B C D E F G H I J K L

I. Insects

Suppose that we can choose which antidotes we buy and which
bugs we kill arbitrarily. To get a problem which is equivalent to the
original we introduce the following penalties:

penalize for A, B , or C for buying corresponding type of
antidote

penalize for p for not killing a bug
penalize for ∞ for killing a bug and not buying an antidote (of
any kind) that kills him

The problem has now become a straightforward min-cut application.

A B C D E F G H I J K L

I. Insects

Suppose that we can choose which antidotes we buy and which
bugs we kill arbitrarily. To get a problem which is equivalent to the
original we introduce the following penalties:

penalize for A, B , or C for buying corresponding type of
antidote
penalize for p for not killing a bug

penalize for ∞ for killing a bug and not buying an antidote (of
any kind) that kills him

The problem has now become a straightforward min-cut application.

A B C D E F G H I J K L

I. Insects

Suppose that we can choose which antidotes we buy and which
bugs we kill arbitrarily. To get a problem which is equivalent to the
original we introduce the following penalties:

penalize for A, B , or C for buying corresponding type of
antidote
penalize for p for not killing a bug
penalize for ∞ for killing a bug and not buying an antidote (of
any kind) that kills him

The problem has now become a straightforward min-cut application.

A B C D E F G H I J K L

I. Insects

Suppose that we can choose which antidotes we buy and which
bugs we kill arbitrarily. To get a problem which is equivalent to the
original we introduce the following penalties:

penalize for A, B , or C for buying corresponding type of
antidote
penalize for p for not killing a bug
penalize for ∞ for killing a bug and not buying an antidote (of
any kind) that kills him

The problem has now become a straightforward min-cut application.

A B C D E F G H I J K L

I. Insects

Build a network as follows:

Create source S and sink T

Create vertices for all bugs bi and for all antidotes xi , yi , zi
Add edges from S to all bi with capacity p

Add edges from all xi (yi , zi) to T with capacity A (B , C)
Add edges from all bi to corresponding xi , yi , zi with capacity
∞

Consider an S − T cut in the resulting graph. Its capacity (total
capacity of edges from S ’s half to T ’s half) coincides with total
penalty for killing all bugs and buying all antidotes in the same half
with S . This means that finding minimal penalty (and, therefore,
maximal profit) reduces to finding minimal S − T cut in the
network.
By Ford-Falkerson theorem, this coincides with the maximal flow in
the network. Any sufficiently efficient algorithm (like Dinic’s
algorithm or scaling) is fast enough.

A B C D E F G H I J K L

I. Insects

Build a network as follows:
Create source S and sink T

Create vertices for all bugs bi and for all antidotes xi , yi , zi
Add edges from S to all bi with capacity p

Add edges from all xi (yi , zi) to T with capacity A (B , C)
Add edges from all bi to corresponding xi , yi , zi with capacity
∞

Consider an S − T cut in the resulting graph. Its capacity (total
capacity of edges from S ’s half to T ’s half) coincides with total
penalty for killing all bugs and buying all antidotes in the same half
with S . This means that finding minimal penalty (and, therefore,
maximal profit) reduces to finding minimal S − T cut in the
network.
By Ford-Falkerson theorem, this coincides with the maximal flow in
the network. Any sufficiently efficient algorithm (like Dinic’s
algorithm or scaling) is fast enough.

A B C D E F G H I J K L

I. Insects

Build a network as follows:
Create source S and sink T

Create vertices for all bugs bi and for all antidotes xi , yi , zi

Add edges from S to all bi with capacity p

Add edges from all xi (yi , zi) to T with capacity A (B , C)
Add edges from all bi to corresponding xi , yi , zi with capacity
∞

Consider an S − T cut in the resulting graph. Its capacity (total
capacity of edges from S ’s half to T ’s half) coincides with total
penalty for killing all bugs and buying all antidotes in the same half
with S . This means that finding minimal penalty (and, therefore,
maximal profit) reduces to finding minimal S − T cut in the
network.
By Ford-Falkerson theorem, this coincides with the maximal flow in
the network. Any sufficiently efficient algorithm (like Dinic’s
algorithm or scaling) is fast enough.

A B C D E F G H I J K L

I. Insects

Build a network as follows:
Create source S and sink T

Create vertices for all bugs bi and for all antidotes xi , yi , zi
Add edges from S to all bi with capacity p

Add edges from all xi (yi , zi) to T with capacity A (B , C)
Add edges from all bi to corresponding xi , yi , zi with capacity
∞

Consider an S − T cut in the resulting graph. Its capacity (total
capacity of edges from S ’s half to T ’s half) coincides with total
penalty for killing all bugs and buying all antidotes in the same half
with S . This means that finding minimal penalty (and, therefore,
maximal profit) reduces to finding minimal S − T cut in the
network.
By Ford-Falkerson theorem, this coincides with the maximal flow in
the network. Any sufficiently efficient algorithm (like Dinic’s
algorithm or scaling) is fast enough.

A B C D E F G H I J K L

I. Insects

Build a network as follows:
Create source S and sink T

Create vertices for all bugs bi and for all antidotes xi , yi , zi
Add edges from S to all bi with capacity p

Add edges from all xi (yi , zi) to T with capacity A (B , C)

Add edges from all bi to corresponding xi , yi , zi with capacity
∞

Consider an S − T cut in the resulting graph. Its capacity (total
capacity of edges from S ’s half to T ’s half) coincides with total
penalty for killing all bugs and buying all antidotes in the same half
with S . This means that finding minimal penalty (and, therefore,
maximal profit) reduces to finding minimal S − T cut in the
network.
By Ford-Falkerson theorem, this coincides with the maximal flow in
the network. Any sufficiently efficient algorithm (like Dinic’s
algorithm or scaling) is fast enough.

A B C D E F G H I J K L

I. Insects

Build a network as follows:
Create source S and sink T

Create vertices for all bugs bi and for all antidotes xi , yi , zi
Add edges from S to all bi with capacity p

Add edges from all xi (yi , zi) to T with capacity A (B , C)
Add edges from all bi to corresponding xi , yi , zi with capacity
∞

Consider an S − T cut in the resulting graph. Its capacity (total
capacity of edges from S ’s half to T ’s half) coincides with total
penalty for killing all bugs and buying all antidotes in the same half
with S . This means that finding minimal penalty (and, therefore,
maximal profit) reduces to finding minimal S − T cut in the
network.
By Ford-Falkerson theorem, this coincides with the maximal flow in
the network. Any sufficiently efficient algorithm (like Dinic’s
algorithm or scaling) is fast enough.

A B C D E F G H I J K L

I. Insects

Build a network as follows:
Create source S and sink T

Create vertices for all bugs bi and for all antidotes xi , yi , zi
Add edges from S to all bi with capacity p

Add edges from all xi (yi , zi) to T with capacity A (B , C)
Add edges from all bi to corresponding xi , yi , zi with capacity
∞

Consider an S − T cut in the resulting graph. Its capacity (total
capacity of edges from S ’s half to T ’s half) coincides with total
penalty for killing all bugs and buying all antidotes in the same half
with S . This means that finding minimal penalty (and, therefore,
maximal profit) reduces to finding minimal S − T cut in the
network.

By Ford-Falkerson theorem, this coincides with the maximal flow in
the network. Any sufficiently efficient algorithm (like Dinic’s
algorithm or scaling) is fast enough.

A B C D E F G H I J K L

I. Insects

Build a network as follows:
Create source S and sink T

Create vertices for all bugs bi and for all antidotes xi , yi , zi
Add edges from S to all bi with capacity p

Add edges from all xi (yi , zi) to T with capacity A (B , C)
Add edges from all bi to corresponding xi , yi , zi with capacity
∞

Consider an S − T cut in the resulting graph. Its capacity (total
capacity of edges from S ’s half to T ’s half) coincides with total
penalty for killing all bugs and buying all antidotes in the same half
with S . This means that finding minimal penalty (and, therefore,
maximal profit) reduces to finding minimal S − T cut in the
network.
By Ford-Falkerson theorem, this coincides with the maximal flow in
the network. Any sufficiently efficient algorithm (like Dinic’s
algorithm or scaling) is fast enough.

A B C D E F G H I J K L

J. Caves

We are given an undirected unweighted graph (possibly
disconnected). We are standing at the vertex 1. Each other vertex
has a certain chance to contain treasure. On each turn we can
choose one of two possible moves:

follow an adjacent edge to another vertex, spend 1 time
jump to a random vertex chosen equiprobably, spend t time

Find the minimal average time needed to find the treasure (under
optimal strategy).

A B C D E F G H I J K L

J. Caves

Suppose that we have already visited a subset S of vertices without
finding the treasure, and currently are standing in the vertex v ∈ S .
Denote dS,v the minimal average time to win under these
conditions.

Observation
There are two possible strategies to follow:

Follow a path to a yet unvisited vertex
Immediately jump to a random vertex

Indeed, it doesn’t make sense to make steps and then make a jump
before visiting new vertex, since we could have jumped from the
start.

A B C D E F G H I J K L

J. Caves

Suppose that we have already visited a subset S of vertices without
finding the treasure, and currently are standing in the vertex v ∈ S .
Denote dS,v the minimal average time to win under these
conditions.

Observation
There are two possible strategies to follow:

Follow a path to a yet unvisited vertex
Immediately jump to a random vertex

Indeed, it doesn’t make sense to make steps and then make a jump
before visiting new vertex, since we could have jumped from the
start.

A B C D E F G H I J K L

J. Caves

Choose a subset S , and assume that we know the answers for all its
proper supersets. Compute

d ′S ,v = min
u 6∈S

(1− pu/
∑
w 6∈S

pw)dS∪{u},u + ρ(u, v)

— the answer for starting vertex v without considering random
jumping (here ρ(u, v) is the length of the shortest path between u
and v).

Let ES be the average time to win after a random jump if the
visited subset is S (clearly, the time doesn’t depend on the vertex).
The following equation should be satisfied:

ES = t +
1

n

∑
u 6∈S

dpS∪{u},u +
∑
v∈S

min(ES , dp
′
S ,v)

A B C D E F G H I J K L

J. Caves

Choose a subset S , and assume that we know the answers for all its
proper supersets. Compute

d ′S ,v = min
u 6∈S

(1− pu/
∑
w 6∈S

pw)dS∪{u},u + ρ(u, v)

— the answer for starting vertex v without considering random
jumping (here ρ(u, v) is the length of the shortest path between u
and v).
Let ES be the average time to win after a random jump if the
visited subset is S (clearly, the time doesn’t depend on the vertex).
The following equation should be satisfied:

ES = t +
1

n

∑
u 6∈S

dpS∪{u},u +
∑
v∈S

min(ES , dp
′
S ,v)

A B C D E F G H I J K L

J. Caves

It suffices to find ES . Denote R =
∑

u 6∈S dpS∪{u},u. Transform:∑
v∈S

min(ES , dp
′
S ,v) = n(Es − t)− R

Sort all numbers dp′S ,v to obtain the sequence d1, . . . , dk , also put
d0 = 0, dk+1 =∞. Suppose that dj 6 ES < dj+1, then

j∑
i=1

di + (k − j)ES = n(ES − t)− R,

or ES =
R+nt+

∑j
i=1 di

n−k+j
For every j such that 0 6 j 6 k compute possible value of ES and
check that it falls in the interval [dj ; dj+1), from these choose
minimal. Since ES should be well-defined, it will be found valid in
at least one case. After that put dpS,v = min(dp′S ,v ,ES).

A B C D E F G H I J K L

J. Caves

It suffices to find ES . Denote R =
∑

u 6∈S dpS∪{u},u. Transform:∑
v∈S

min(ES , dp
′
S ,v) = n(Es − t)− R

Sort all numbers dp′S ,v to obtain the sequence d1, . . . , dk , also put
d0 = 0, dk+1 =∞. Suppose that dj 6 ES < dj+1, then

j∑
i=1

di + (k − j)ES = n(ES − t)− R,

or ES =
R+nt+

∑j
i=1 di

n−k+j
For every j such that 0 6 j 6 k compute possible value of ES and
check that it falls in the interval [dj ; dj+1), from these choose
minimal. Since ES should be well-defined, it will be found valid in
at least one case. After that put dpS,v = min(dp′S ,v ,ES).

A B C D E F G H I J K L

J. Caves

It suffices to find ES . Denote R =
∑

u 6∈S dpS∪{u},u. Transform:∑
v∈S

min(ES , dp
′
S ,v) = n(Es − t)− R

Sort all numbers dp′S ,v to obtain the sequence d1, . . . , dk , also put
d0 = 0, dk+1 =∞. Suppose that dj 6 ES < dj+1, then

j∑
i=1

di + (k − j)ES = n(ES − t)− R,

or ES =
R+nt+

∑j
i=1 di

n−k+j

For every j such that 0 6 j 6 k compute possible value of ES and
check that it falls in the interval [dj ; dj+1), from these choose
minimal. Since ES should be well-defined, it will be found valid in
at least one case. After that put dpS,v = min(dp′S ,v ,ES).

A B C D E F G H I J K L

J. Caves

It suffices to find ES . Denote R =
∑

u 6∈S dpS∪{u},u. Transform:∑
v∈S

min(ES , dp
′
S ,v) = n(Es − t)− R

Sort all numbers dp′S ,v to obtain the sequence d1, . . . , dk , also put
d0 = 0, dk+1 =∞. Suppose that dj 6 ES < dj+1, then

j∑
i=1

di + (k − j)ES = n(ES − t)− R,

or ES =
R+nt+

∑j
i=1 di

n−k+j
For every j such that 0 6 j 6 k compute possible value of ES and
check that it falls in the interval [dj ; dj+1), from these choose
minimal. Since ES should be well-defined, it will be found valid in
at least one case. After that put dpS,v = min(dp′S ,v ,ES).

A B C D E F G H I J K L

J. Caves

Finally, we use subset DP to compute all dpS ,v by decreasing of S .
The answer is dp1,0. The complexity is O(2nn log n).

A B C D E F G H I J K L

K. Blocks

For a permutation of 1, . . . , n we can count numbers a — the
number of elements which are greater then all to its left, and b —
the number of elements which are greater then all to its right.
Count the number of permutations for many values of n, a and b.

A B C D E F G H I J K L

K. Blocks

Denote f (n, a, b) the answer to the problem. Consider erasing the
smallest number (1) from a permutation with n > 1 elements and
renumbering all the rest elements (that is, decreasing them by 1).

If 1 was the leftmost element, then a decreases by 1, b stays
the same
If 1 was the rightmost element, then b decreases by 1, a stays
the same
Otherwise, both a and b stay the same

That leads to the formula
f (n, a, b) = f (n−1, a−1, b)+f (n−1, a, b−1)+(n−1)f (n−1, a, b)
if n > 1.
Of course, f (1, a, b) = 1 if a = b = 1, and 0 in all other cases.
If a and b do not exceed k , straightforward DP solution we
obtained requires O(nk2) time and memory, which does not pass.

A B C D E F G H I J K L

K. Blocks

Denote f (n, a, b) the answer to the problem. Consider erasing the
smallest number (1) from a permutation with n > 1 elements and
renumbering all the rest elements (that is, decreasing them by 1).

If 1 was the leftmost element, then a decreases by 1, b stays
the same

If 1 was the rightmost element, then b decreases by 1, a stays
the same
Otherwise, both a and b stay the same

That leads to the formula
f (n, a, b) = f (n−1, a−1, b)+f (n−1, a, b−1)+(n−1)f (n−1, a, b)
if n > 1.
Of course, f (1, a, b) = 1 if a = b = 1, and 0 in all other cases.
If a and b do not exceed k , straightforward DP solution we
obtained requires O(nk2) time and memory, which does not pass.

A B C D E F G H I J K L

K. Blocks

Denote f (n, a, b) the answer to the problem. Consider erasing the
smallest number (1) from a permutation with n > 1 elements and
renumbering all the rest elements (that is, decreasing them by 1).

If 1 was the leftmost element, then a decreases by 1, b stays
the same
If 1 was the rightmost element, then b decreases by 1, a stays
the same

Otherwise, both a and b stay the same

That leads to the formula
f (n, a, b) = f (n−1, a−1, b)+f (n−1, a, b−1)+(n−1)f (n−1, a, b)
if n > 1.
Of course, f (1, a, b) = 1 if a = b = 1, and 0 in all other cases.
If a and b do not exceed k , straightforward DP solution we
obtained requires O(nk2) time and memory, which does not pass.

A B C D E F G H I J K L

K. Blocks

Denote f (n, a, b) the answer to the problem. Consider erasing the
smallest number (1) from a permutation with n > 1 elements and
renumbering all the rest elements (that is, decreasing them by 1).

If 1 was the leftmost element, then a decreases by 1, b stays
the same
If 1 was the rightmost element, then b decreases by 1, a stays
the same
Otherwise, both a and b stay the same

That leads to the formula
f (n, a, b) = f (n−1, a−1, b)+f (n−1, a, b−1)+(n−1)f (n−1, a, b)
if n > 1.

Of course, f (1, a, b) = 1 if a = b = 1, and 0 in all other cases.
If a and b do not exceed k , straightforward DP solution we
obtained requires O(nk2) time and memory, which does not pass.

A B C D E F G H I J K L

K. Blocks

Denote f (n, a, b) the answer to the problem. Consider erasing the
smallest number (1) from a permutation with n > 1 elements and
renumbering all the rest elements (that is, decreasing them by 1).

If 1 was the leftmost element, then a decreases by 1, b stays
the same
If 1 was the rightmost element, then b decreases by 1, a stays
the same
Otherwise, both a and b stay the same

That leads to the formula
f (n, a, b) = f (n−1, a−1, b)+f (n−1, a, b−1)+(n−1)f (n−1, a, b)
if n > 1.
Of course, f (1, a, b) = 1 if a = b = 1, and 0 in all other cases.

If a and b do not exceed k , straightforward DP solution we
obtained requires O(nk2) time and memory, which does not pass.

A B C D E F G H I J K L

K. Blocks

Denote f (n, a, b) the answer to the problem. Consider erasing the
smallest number (1) from a permutation with n > 1 elements and
renumbering all the rest elements (that is, decreasing them by 1).

If 1 was the leftmost element, then a decreases by 1, b stays
the same
If 1 was the rightmost element, then b decreases by 1, a stays
the same
Otherwise, both a and b stay the same

That leads to the formula
f (n, a, b) = f (n−1, a−1, b)+f (n−1, a, b−1)+(n−1)f (n−1, a, b)
if n > 1.
Of course, f (1, a, b) = 1 if a = b = 1, and 0 in all other cases.
If a and b do not exceed k , straightforward DP solution we
obtained requires O(nk2) time and memory, which does not pass.

A B C D E F G H I J K L

K. Blocks

For a given permutation construct a sequence as follows: consider
all numbers from n − 1 to 1; if the number x is to the left (to the
right) of all greater number, append L (R) to the sequence,
otherwise append n − 1− x — the number of ways to place x , but
not on the either end.

Example

For example, it’s easy to see that for the permutation (3, 5, 1, 4, 2)
we obtain the sequence R, L,R, 3.

The number of permutations with the chosen sequence is exactly
the product of all numbers in the sequence (that is, in the example
other two permutations (3, 1, 5, 4, 2) and (3, 5, 4, 1, 2)).

A B C D E F G H I J K L

K. Blocks

For a given permutation construct a sequence as follows: consider
all numbers from n − 1 to 1; if the number x is to the left (to the
right) of all greater number, append L (R) to the sequence,
otherwise append n − 1− x — the number of ways to place x , but
not on the either end.

Example

For example, it’s easy to see that for the permutation (3, 5, 1, 4, 2)
we obtain the sequence R, L,R, 3.

The number of permutations with the chosen sequence is exactly
the product of all numbers in the sequence (that is, in the example
other two permutations (3, 1, 5, 4, 2) and (3, 5, 4, 1, 2)).

A B C D E F G H I J K L

K. Blocks

For a given permutation construct a sequence as follows: consider
all numbers from n − 1 to 1; if the number x is to the left (to the
right) of all greater number, append L (R) to the sequence,
otherwise append n − 1− x — the number of ways to place x , but
not on the either end.

Example

For example, it’s easy to see that for the permutation (3, 5, 1, 4, 2)
we obtain the sequence R, L,R, 3.

The number of permutations with the chosen sequence is exactly
the product of all numbers in the sequence (that is, in the example
other two permutations (3, 1, 5, 4, 2) and (3, 5, 4, 1, 2)).

A B C D E F G H I J K L

K. Blocks

Observation
The answer f (n, a, b) is the sum of products of numbers over all
possible sequences of n − 1 elements with a− 1 L’s and b − 1 R ’s.

Observation
It doesn’t matter for the product if we put L’s or R ’s into the
sequence, we can change them all to X and multiply the answer by(a+b−2

a−1
)
.

Denote g(n, k) the sum of products of numbers over all sequences
of n − 1 elements with k X ’s.

Observation
g(n, k) = g(n − 1, k − 1) + (n − 1)g(n − 1, k)

This recurrence can be precomputed in O(nk) time and memory.
The answer is f (n, a, b) = g(n, a+ b − 2)

(a+b−2
a−1

)
.

A B C D E F G H I J K L

K. Blocks

Observation
The answer f (n, a, b) is the sum of products of numbers over all
possible sequences of n − 1 elements with a− 1 L’s and b − 1 R ’s.

Observation
It doesn’t matter for the product if we put L’s or R ’s into the
sequence, we can change them all to X and multiply the answer by(a+b−2

a−1
)
.

Denote g(n, k) the sum of products of numbers over all sequences
of n − 1 elements with k X ’s.

Observation
g(n, k) = g(n − 1, k − 1) + (n − 1)g(n − 1, k)

This recurrence can be precomputed in O(nk) time and memory.
The answer is f (n, a, b) = g(n, a+ b − 2)

(a+b−2
a−1

)
.

A B C D E F G H I J K L

K. Blocks

Observation
The answer f (n, a, b) is the sum of products of numbers over all
possible sequences of n − 1 elements with a− 1 L’s and b − 1 R ’s.

Observation
It doesn’t matter for the product if we put L’s or R ’s into the
sequence, we can change them all to X and multiply the answer by(a+b−2

a−1
)
.

Denote g(n, k) the sum of products of numbers over all sequences
of n − 1 elements with k X ’s.

Observation
g(n, k) = g(n − 1, k − 1) + (n − 1)g(n − 1, k)

This recurrence can be precomputed in O(nk) time and memory.
The answer is f (n, a, b) = g(n, a+ b − 2)

(a+b−2
a−1

)
.

A B C D E F G H I J K L

K. Blocks

Observation
The answer f (n, a, b) is the sum of products of numbers over all
possible sequences of n − 1 elements with a− 1 L’s and b − 1 R ’s.

Observation
It doesn’t matter for the product if we put L’s or R ’s into the
sequence, we can change them all to X and multiply the answer by(a+b−2

a−1
)
.

Denote g(n, k) the sum of products of numbers over all sequences
of n − 1 elements with k X ’s.

Observation
g(n, k) = g(n − 1, k − 1) + (n − 1)g(n − 1, k)

This recurrence can be precomputed in O(nk) time and memory.
The answer is f (n, a, b) = g(n, a+ b − 2)

(a+b−2
a−1

)
.

A B C D E F G H I J K L

K. Blocks

Observation
The answer f (n, a, b) is the sum of products of numbers over all
possible sequences of n − 1 elements with a− 1 L’s and b − 1 R ’s.

Observation
It doesn’t matter for the product if we put L’s or R ’s into the
sequence, we can change them all to X and multiply the answer by(a+b−2

a−1
)
.

Denote g(n, k) the sum of products of numbers over all sequences
of n − 1 elements with k X ’s.

Observation
g(n, k) = g(n − 1, k − 1) + (n − 1)g(n − 1, k)

This recurrence can be precomputed in O(nk) time and memory.
The answer is f (n, a, b) = g(n, a+ b − 2)

(a+b−2
a−1

)
.

A B C D E F G H I J K L

L. Postman

We are given an undirected unweighted tree. We can choose a
starting vertex and walk the tree so that to visit all the vertices.
Minimize the sum of times of first visit for all vertices.

A B C D E F G H I J K L

L. Postman

Let’s solve the problem if the starting vertex is fixed.

It’s evident that we should choose the order of subtrees to traverse
and visit all vertices from the first subtree first, the from the second
subtree, and so on. In each of the subtrees we choose the order of
its root’s subtrees, and so on.

Observation
The answer (total time) doesn’t depend on the order of subtrees.

A B C D E F G H I J K L

L. Postman

Let’s solve the problem if the starting vertex is fixed.
It’s evident that we should choose the order of subtrees to traverse
and visit all vertices from the first subtree first, the from the second
subtree, and so on. In each of the subtrees we choose the order of
its root’s subtrees, and so on.

Observation
The answer (total time) doesn’t depend on the order of subtrees.

A B C D E F G H I J K L

L. Postman

Let’s solve the problem if the starting vertex is fixed.
It’s evident that we should choose the order of subtrees to traverse
and visit all vertices from the first subtree first, the from the second
subtree, and so on. In each of the subtrees we choose the order of
its root’s subtrees, and so on.

Observation
The answer (total time) doesn’t depend on the order of subtrees.

A B C D E F G H I J K L

L. Postman

Proof
Try to change the order of two adjacent subtrees of a vertex. Let
first subtree contain k1 vertices and have answer t1 (that is, the
minimum total first visit time to start from the root and visit all
vertices in the subtree), similarily, for the second subtree the
numbers are k2 and t2.

If the first subtree comes first, the answer is k1 (additional delay 1
to step into the first subtree) +t1 (traverse the first subtree)
+k2(2k1 + 1) (additional delay to enter the second subtree)
+t2 = t1 + t2 + k1 + k2 +2k1k2. From the symmetry it follows that
the answer is independent of the order of subtrees.

It’s fairly easy to use subtree DP to compute answer for the fixed
root.

A B C D E F G H I J K L

L. Postman

Proof
Try to change the order of two adjacent subtrees of a vertex. Let
first subtree contain k1 vertices and have answer t1 (that is, the
minimum total first visit time to start from the root and visit all
vertices in the subtree), similarily, for the second subtree the
numbers are k2 and t2.
If the first subtree comes first, the answer is k1 (additional delay 1
to step into the first subtree) +t1 (traverse the first subtree)
+k2(2k1 + 1) (additional delay to enter the second subtree)
+t2 = t1 + t2 + k1 + k2 +2k1k2. From the symmetry it follows that
the answer is independent of the order of subtrees.

It’s fairly easy to use subtree DP to compute answer for the fixed
root.

A B C D E F G H I J K L

L. Postman

Proof
Try to change the order of two adjacent subtrees of a vertex. Let
first subtree contain k1 vertices and have answer t1 (that is, the
minimum total first visit time to start from the root and visit all
vertices in the subtree), similarily, for the second subtree the
numbers are k2 and t2.
If the first subtree comes first, the answer is k1 (additional delay 1
to step into the first subtree) +t1 (traverse the first subtree)
+k2(2k1 + 1) (additional delay to enter the second subtree)
+t2 = t1 + t2 + k1 + k2 +2k1k2. From the symmetry it follows that
the answer is independent of the order of subtrees.

It’s fairly easy to use subtree DP to compute answer for the fixed
root.

A B C D E F G H I J K L

L. Postman

Now to account for all possible roots. To do that, consider a vertex
v which is not a root chosen before. In addition to its leaves’
answers and sizes we have to know the answer and size of the
subtree over the edge to its parent p.

To compute the answer for the “parent” subtree we can use the
answer for the case when p is root and “remove” the subtree
containing v . To do that, note that the order is irrelevant, so we
may assume that v ’s subtree comes last in the order and subtract
its contribution from p’s answer.
Implement (yet another) DFS that computes the answer for every
root using parent’s results. This makes for a linear solution.

A B C D E F G H I J K L

L. Postman

Now to account for all possible roots. To do that, consider a vertex
v which is not a root chosen before. In addition to its leaves’
answers and sizes we have to know the answer and size of the
subtree over the edge to its parent p.
To compute the answer for the “parent” subtree we can use the
answer for the case when p is root and “remove” the subtree
containing v . To do that, note that the order is irrelevant, so we
may assume that v ’s subtree comes last in the order and subtract
its contribution from p’s answer.

Implement (yet another) DFS that computes the answer for every
root using parent’s results. This makes for a linear solution.

A B C D E F G H I J K L

L. Postman

Now to account for all possible roots. To do that, consider a vertex
v which is not a root chosen before. In addition to its leaves’
answers and sizes we have to know the answer and size of the
subtree over the edge to its parent p.
To compute the answer for the “parent” subtree we can use the
answer for the case when p is root and “remove” the subtree
containing v . To do that, note that the order is irrelevant, so we
may assume that v ’s subtree comes last in the order and subtract
its contribution from p’s answer.
Implement (yet another) DFS that computes the answer for every
root using parent’s results. This makes for a linear solution.

