
MIPT Training Camp 2014, Contest 10, Hard Blitz
http://official.contest.yandex.ru/contest/901, Tuesday, November 18, 2014

Problem A. Death Star
Input file: deathstar.in

Output file: deathstar.out

Time limit: 2 seconds
Memory limit: 64 mebibytes

A long time ago in a galaxy far, far away The Merchant Federation fought against the rebels — a small
group of defenders of the Republic. For the ultimate victory the Federation has decided to build the
Death Star — a huge space ship, a weapon that the Universe had never seen before. They selected several
planets and build a factory on each one so that all together they became a big circular conveyor: the
details produced at the planet ai were transported to the planet number ai+1 for i < M and from the
planet aM to the planet number a1 (naturally, all M planets are distinct). To somewhat reduce the cost of
the project, the Federation also decided to transport the details only through the existing hypertunnels,
each of which connects some two planets in a certain direction.

Having heard of the Death Star, the rebels realized that the war would not last for too long yet: either
the Death Star would destroy them or they would destroy it (and the Federation as well). It’s not very
hard to understand that the Republic defenders consider satisfying only the second alternative...

The Analysis Center took the decision to destroy the Death Star at the construction stage. So they need
to find out which planets were selected by the Federation. They already have the hypertunnel map. It’s
also known that for the years of tyranny, the Federation had managed to build exactly one hypertunnel
among each pair of planets. In order to find out whether there is a factory on the planet or not, they
had to send there a scout ship (the rebels really had very few of them). For this reason, first of all they
needed to consider the matter theoretically, and only after that send scouts to the plantes which, as they
thought, contained the factories most probably.

Actually, the most urgent question is to count how many different ways of selecting the locations for the
factories and the transportation routes the Federation had. And since you worked in the Analysis Center,
this task was assigned exactly to you.

Two ways are considered the same if their canonic forms do not differ. The canonic form is a sequence
of M numbers aj , aj+1, . . . , aM , a1, . . . , aj−1 such that aj is minimal among all ak and there are tunnels
aj → aj+1, aj+1 → aj+2, . . . , aM−1 → aM , aM → a1, . . . , aj−1 → aj .

Input
On the first line of the input file there are two integer numbers: N — the number of planets in the Galaxy, M —
the number of the factories the Federation intends to build (1 ≤ N ≤ 1400, 2 < M < 6). On the second line of
the input file there is a sequence of hexidecimal digits (0..9, A..F) which specifies the hypertunnel map in the
ciphered way. In order to decipher it, one should to replace each digit with its binary representation (keep in mind
that if the latter is shorter than 4 digits, it is padded with zeroes to 4 digits at the left end). Then one should take
only first N ∗ (N − 1)/2 digits and the rest of the sequence must be dropped.

The hypertunnel description is given in the following order: (1−2), (1−3), . . ., (1−n), (2−3), (2−4), . . ., (2−n),
. . ., ((n − 1)− n), where each pair (a− b) has exactly one corresponding digit which is 1 when the tunnel from a
to b exists and 0 otherwise (then there exists a hypertunnel from b to a).

Output
Print one integer — the number of ways to select the locations for the factories. And may The Force be with you!

Example
deathstar.in deathstar.out

4 3

B4

2

Comment on the sample:

After decipering the string “B4” we obtain the string “10110100”. Dropping off 3 unnecessary trailing digits,
we see that there are tunnels 1 → 2, 3 → 1, 1 → 4, 2 → 3, 4 → 2, 3 → 4. And the required ways are:
1 → 2 → 3, 2 → 3 → 4.

Page 1 of 4



MIPT Training Camp 2014, Contest 10, Hard Blitz
http://official.contest.yandex.ru/contest/901, Tuesday, November 18, 2014

Problem B. Elevator
Input file: elevator.in

Output file: elevator.out

Time limit: 2 seconds
Memory limit: 64 mebibytes

Let’s consider some building with N floors. There is an elevator in it, of course. It works in the following
way:

1. if the button is pressed on some floor, the number of this floor is pushed into the calls queue;
2. if at the moment when button is pressed, elevator is not moving and the moving has not taken place

or no less than A seconds have passed since the moment elevator stopped, then the elevator starts
moving to the floor at which the button was pressed. This call will be the current call;

3. it takes B seconds for the elevator to move between consecutive floors;
4. if the elevator passes a floor, number of which is in the calls queue, it stops immediately (we will

consider this moment as the moment when the corresponding call is processed);
5. after the stop, one occurrence of floor’s number is removed from the calls queue, lift stays motionless

during A seconds (time for passengers to enter and leave), and then continues moving to the floor
of the current call;

6. if the elevator stops at the floor of the current call, then the next earliest call becomes the current
one;

7. if the call from the current floor occurs at the moment when the elevator starts moving, the elevator
immediately stops again.

You are required to determine the moments of time when the calls will be processed. Initially the elevator
is on the first floor.

Input
On the first line of the input file there are 4 integer numbers: N — the number of floors, M — the number
of calls, A — the number of seconds for passengers to enter and leave the elevator, B — the number of
seconds for the elevator to move between two consecutive floors, (1 ≤ N,M ≤ 105, 1 ≤ A,B ≤ 100). The
next M lines contain 2 integer numbers each: Ti — the number of seconds passed since the time moment
0 till the i-th call was made, Fi — the number of floor from which the i-th call was made (1 ≤ Ti ≤ 105,
1 ≤ Fi ≤ N , Ti ≤ Ti+1 for all i in range 1..M − 1). In case when Ti = Ti+1, the i-th call is considered to
be made earlier than the (i+ 1)-th call. The numbers on each line are separated by spaces.

Output
Output the moments when the calls were processed (the number of seconds passed since the moment 0
till the moment when the call was processed) in the order the calls were given in the input file, one per
line.

Example
elevator.in elevator.out

5 6 12 13

42 5

86 1

154 4

183 3

234 2

234 4

94

158

221

196

272

234

Page 2 of 4



MIPT Training Camp 2014, Contest 10, Hard Blitz
http://official.contest.yandex.ru/contest/901, Tuesday, November 18, 2014

Problem C. Illumination
Input file: standard input

Output file: standard output

Time limit: 1 second
Memory limit: 64 mebibytes

Two cubes and a light bulb are placed in a three-dimensional euclidean space. You are expected to find
out if one of them casts shadow on the other one and if so, calculate the area of this shadow.

Input
The first line of the input contains the coordinates of the bulb. It is followed by two groups of four lines
each that describe the cubes. Each line of the cube description contains the coordinates of a vertex (see
the figure where the vertices are marked and labeled in the same order as they are given in the input).

All input numbers are not greater than 104 by their absolute values.

1

2
3

4

All the coordinates are given with 5 digits after decimal point. It is guaranteed that the cubes do not
intersect, the light bulb is outside both of them, and doesn’t lie on any of the planes that contain their
faces. A light bulb should be regarded as a point light source.

Output
The output should contain a single line with two numbers separated with a space character. The first one
is the number of the cube that has a shadow on it (1 or 2). The second is the area of the shadow with 3
digits after decimal point.

If none of the given cubes casts shadow on the other the output should contain a single number “-1”.

Example
standard input standard output

-1.00000 1.00000 1.00000

0.00000 0.00000 0.00000

2.00000 0.00000 0.00000

0.00000 2.00000 0.00000

0.00000 0.00000 2.00000

5.00000 0.00000 0.00000

7.00000 0.00000 0.00000

5.00000 2.00000 0.00000

5.00000 0.00000 2.00000

2 4.000

0.00000 0.00000 0.00000

1.00000 1.00000 1.00000

2.00000 1.00000 1.00000

1.00000 2.00000 1.00000

1.00000 1.00000 2.00000

-1.00000 -1.00000 -1.00000

-1.00000 -2.00000 -1.00000

-2.00000 -1.00000 -1.00000

-1.00000 -1.00000 -2.00000

-1

Page 3 of 4



MIPT Training Camp 2014, Contest 10, Hard Blitz
http://official.contest.yandex.ru/contest/901, Tuesday, November 18, 2014

Problem D. Road Works
Input file: rw.in

Output file: rw.out

Time limit: 3 seconds
Memory limit: 256 mebibytes

In a far land of Roadland, there are N cities connected by M bidirectional roads. The road network is
organized in such a way that

• no road connects a city to itself,
• no two cities are connected by more than one road,
• each city can be reached from each other city by roads, and
• if cities A and B are connected by road, there exists at most one simple path from A to B which

does not contain that road (Recall that a simple path visits each vertex not more than once).

Each road is described by which cities it connects, as well as what number of seconds it takes initially to
drive along that road.

Starting from day 1 and until day K, a single event happens every day. There are two types of events.
The first type is a query of the form “what is the minimal time to get from city x to city y”. The second
type is an information message of the form “the road number x was repaired this day, and it now takes
y seconds to drive along that road”. All roads suffer damage over time, so at the beginning of each day,
before any event takes place, the time to drive along each road is increased by one second.

Given the road network and the sequence of events, find the answers of the queries.

Input
The first line of input contains two integers N and M (2 ≤ N ≤ 105).

Next M lines contain three integers each: ai, bi and ti. Here, ai and bi are the numbers of cities that the respective
road connects, and ti is the time it takes to drive along that road (1 ≤ ai, bi ≤ N , 1 ≤ ti ≤ 105). Roads are
numbered 1 through M in the order in which they are given.

The next line of input contains a single integer K (1 ≤ K ≤ 105) — the number of events.

Next K lines contain the descriptions of events, one line per event. A query is given as P x y (1 ≤ x, y ≤ N), and
an information message is given as R x y (1 ≤ x ≤ M , 1 ≤ y ≤ 105). All numbers in the input are integers.

Output
For each query, output a single line with a single integer on it — the minimal time it takes to drive between the
cities given in the query.

Example
rw.in rw.out

4 4

1 2 1

2 3 1

3 4 1

4 2 1

10

P 1 2

P 2 3

P 1 4

P 1 3

R 1 5

R 2 1000

P 1 2

P 2 4

R 2 1

P 1 4

2

3

8

10

7

9

21

Page 4 of 4


